
Reduced Hardware NOREC: An Opaque
Obstruction-Free and Privatizing HyTM

Alexander Matveev
Tel-Aviv University

matveeva@post.tau.ac.il

Nir Shavit
MIT

shanir@csail.mit.edu

Abstract
This paper presents a reduced-hardware (RH) version of the
promising NORec Hybrid TM algorithm. Instead of an all-software
slow path, in RH transactions, part of the slow-path is executed us-
ing a short hardware transaction. The purpose of this hardware
component is not to speed up the slow-path (though this is a side
effect). Rather, using it we are able to eliminate virtually all of the
instrumentation from the common hardware fast-path, requiring it
to only access the shared “clock” of the NORec STM at the end
of the hardware transaction. This improves on all prior work, in-
cluding our own prior RH work, by presenting for the first time
a Hybrid Transactional Memory that provides opacity with low
hardware abort rates. Moreover, the “mostly software” slow-path
is obstruction-free (no locking), privatizing, allows complete con-
currency between hardware and software transactions, and uses the
short hardware transactions only to write values during the soft-
ware commit. We provide a simple slow-slow path in the unlikely
case that both the hardware and mostly software paths fail.

For the concurrency levels we are able to test (a 4-core 8-way
Haswell chip) the new algorithm exhibits promising performance.

1. Introduction
IBM and Intel have recently announced hardware support for best-
effort hardware transactional memory (HTM) in upcoming pro-
cessors [12, 13]. Best-effort HTMs impose limits on hardware
transactions, but eliminate the overheads associated with loads and
stores in software transactional memory (STM) implementations.
Because it is possible for HTM transactions to fail for various rea-
sons, a hybrid transactional memory (HyTM) approach has been
studied extensively in the literature. It supports a best effort attempt
to execute transactions in hardware, yet always falls back to slower
all-software transactions in order to provide better progress guaran-
tees and the ability to execute various systems calls and protected
instructions that are not allowed in hardware transactions.

The first HyTM [6, 8] algorithms supported concurrent execu-
tion of hardware and software transactions by instrumenting the
hardware transactions’ shared reads and writes to check for changes
in the STM’s metadata. Riegel et al. [10] provide an excellent sur-
vey of HyTM algorithms to date, and the various proposals on how

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $15.00

to reduce the instrumentation overheads in the frequently executed
hardware fast-path: the key to good HyTM performance.

In the past two years, Dalessandro et al. [4] and Riegel et al.
[10] have proposed Hybrid TMs based on the NORec STM.These
are the most promising Hybrid TMs to date because they allow to
limit the overall need to instrument instructions in the algorithms
all hardware fast-path.

The first proposal, Hybrid NORec [4], is a hybrid version of
the efficient NORec STM [5]. In it, write transactions’ commits
are executed sequentially and a global clock is used to notify con-
current read transactions about the updates to memory. The write
commits trigger the necessary re-validations and aborts of the con-
currently executing transactions. The great benefit of the NORec
HyTM scheme over classic HyTM proposals is that no metadata per
memory location is required and instrumentation costs are reduced
significantly. However, in order to provide opacity in the hardware
transactions, the global clock of the NORec STM must be read at
the start of the hardware transaction, which adds it to the transac-
tion’s tracking set and causes high level of fast-path aborts. Using
sandboxing in place of opacity is not a viable solution as it can
compromise the correctness of transactional code.

The second proposal, by Riegel et al. [10], effectively reduces
the instrumentation overhead of hardware transactions in HyTM
algorithms based on both the LSA [11] and NORec [5] STMs. It
does so by using non-speculative operations inside the hardware
transactions to provide opacity. Unfortunately, these operations are
supported by AMD’s proposed ASF transactional hardware [2] but
are not supported in the best-effort HTMs that IBM and Intel are
bringing to the marketplace.

In a recent paper we presented the reduced hardware (RH)
[9] approach to designing HyTM algorithms. Instead of an all-
software slow path, in RH transactions, part of the slow-path is
executed using a smaller hardware transaction, so what we have
is actually a “mixed” hardware-software slow path. The purpose of
this hardware component is not to speed up the slow-path (though
this is a side effect). Rather, using it we were able to eliminate a
large part of the instrumentation from the common hardware fast-
path. If the mixed slow path fails one defaults to a slow slow path
based on a global lock.

In [9] we presented an RH version of the TL2 STM, that elim-
inated the instrumentation overhead of reads in the fast-path in-
strumentation, and provided an efficient fast path for the HyTM,
improving on all prior algorithms. However, there still remained
several key problems with this algorithm:

• The fast-path avoided instrumenting reads but still instrumented
writes. Since reads are typically 4 times more frequent than
writes this is an improvement, but not as fast as a pure hardware
transaction.

• In order to provide opacity and obstruction-freedom, the small
hardware transaction in the slow path, needed to include a
verification phase of the read locations. This meant that the
chances of the short hardware transaction failing were still high
as it included both the read and write sets.
• The slow path was not privatizing, a problem if the algorithm

were to really be deployed in a commercial setting.
• The default slow-slow path was blocking, limiting the concur-

rency between hardware and software transactions.

In this paper we present for the first time an RH version of the
NORec Hybrid TM algorithm. The key idea is a way of applying
the RH approach to the NORec algorithm, so that unlike prior
NORec-based HyTM proposals, reading the shared global clock
of the NORec STM happens only at the end of the hardware
transaction. The short hardware transactions are used only to write
the write-set values during the software commit, and we show how
to default to an all software NORec “slow-slow path” in the rare
case where both the fast and slow paths repeatedly fail to commit.

This new algorithm overcomes the drawbacks of all prior HyTM
algorithms, including the prior Hybrid NORec proposals, and im-
proves our own prior work by providing:

• The first HyTM that has a fast-path with no instrumentation at
all, not of reads or of writes.
• The first HyTM that has a fast-path and slow-path that are

all opaque, obstruction-free, privatizing, and allow complete
concurrency between hardware and software transactions.
• The first HyTM that uses only a short hardware transaction in

the mixed path, consisting only of the write set, and can thus
be attempted repeatedly until it succeeds without a need for
revalidation.

Our empirical testing of the new RH NORec algorithm on a
state-of-the-art 4-core Haswell chip provides encouraging evi-
dence of the potential effectiveness of the reduced hardware ap-
proach 1 We believe that our encouraging results and the complete
obstruction-freedom of the new algorithm’s fast and slow paths
raise interesting questions about the tradeoffs of using a combi-
nation of hardware and software in the previously software-only
slow-path of Hybrid TMs, and more generally, in the cost of the
opacity property itself.

The paper is organized as follows. We begin by an overview of
our new hybrid protocol, and then get into the details and the lim-
itations of the algorithm. We then show a version of the algorithm
that takes advantage of IBM’s proposed new supend-resume oper-
ations. Finally, we show the results of our empirical testing.

2. Reduced Hardware NORec
Here, in a nutshell, is how our new hybrid TM protocol works. The
RH NORec protocol has a multi-level fallback mechanism: for any
transaction it first tries a pure hardware fast path. If this fails it tries
a new mixed slow-path, and if this fails, it tries an all software slow-
slow-path.

On the slow-path, RH NORec executes the original NORec STM
transaction [5]. The transaction body is executed purely in soft-
ware. It collects a read-set and a write-set, postpones the actual data
writes to the commit phase, and performs current read-set value-
based revalidation on every NORec global clock change. The key
new element in RH NORec is that the commit-time write-back of

1 This is the first such empirical proof as our earlier paper [9] was a
simulation published before Haswell chips were available. Obviously it
would be interesting to test the approach when larger Haswell chips are
available.

Algorithm 1 RH NORec fast-path transaction
1: function FAST PATH START(ctx)

. no instrumentation - only start the hardware transaction
2: HTM Start()
3: end function
4:
5: function FAST PATH WRITE(ctx, addr, value)

. no instrumentation - simply write the location
6: store(addr, value)
7: end function
8:
9: function FAST PATH READ(ctx, addr)

. no instrumentation - simply read the location
10: return load(addr)
11: end function
12:
13: function FAST PATH COMMIT(ctx)

. increment the global clock to notify other transactions about
possible update to the memory

14: global clock ← global clock + 1
15: HTM Commit()
16: end function

the new values is executed within a single speculative hardware
transaction. The commit saves the current global clock value, starts
read-set value-based revalidation and then initiates a small hard-
ware transaction, which first verifies that the current global clock is
equal to the saved one. This clock check verifies that the read-set
revalidation that was just performed is still valid within the hard-
ware transaction. Then the small hardware transaction performs the
writes of the write-set and updates the global clock. Unlike the orig-
inal Hybrid NORec, there are no locks, and the slow-path transac-
tion is obstruction-free. Moreover, the short hardware transaction
can be repeated several times until it succeeds without any loss of
correctness.

This change in the slow-path, turning it into a mixed slow-path,
allows us to implement the hardware fast-path transactions without
reading the NORec global clock on every fast-path transaction start.
Instead, the fast-path is only required to update the global clock
upon every fast-path commit of a transaction 2. As a result, the RH
NORec avoids many of the original false aborts that limited Hybrid
NORec’s scalability (see the analysis in Section 4). Intuitively, this
update only during the commit suffices because for any slow-path
transaction, concurrent hardware transactions will either see all the
new values written, or all the old ones, but will fail if they read both
new and old versions because this means they overlapped with the
slow-path’s hardware commit.

How likely-to-fail is the hardware part of the mixed slow-path
transaction? Because in the slow-path, the transaction body is ex-
ecuted purely in software, any system calls and protected instruc-
tions that might have failed the original hardware transaction can
now complete in software before the commit point. In the com-
mit point, the small hardware transaction performs only the ac-
tual writes, so the hardware requirements are reduced to be only
the write-set locations, and there is no requirement to speculate on
the read-set locations. Still, the commit write-back may fail due to
hardware capacity limitations, because the write-set is too large;
but these cases are usually rare, and if they happen the algorithm
will, as we explain later, fallback to a slow-slow mode, where con-
current hardware and software transactions run the original Hybrid
NORec.

2 In actuality it only needs to update it for transactions that write.

Algorithm 2 RH NORec mixed slow-path transaction
1: function SLOW PATH START(ctx)
2: ctx.tx version← global clock
3: end function
4:
5: function SLOW PATH WRITE(ctx, addr, value)

. add to write-set
6: ctx.write set← ctx.write set ∪ {addr, value}
7: end function
8:
9: function SLOW PATH READ(ctx, addr)

. check if the location is in the write-set
10: if addr ∈ ctx.write set then
11: return the value from the write-set
12: end if
13: cur value← load(addr)

. log the read and revalidate if required
14: ctx.read set← ctx.read set ∪ {addr, cur value}
15: if ctx.tx version 6= global clock then
16: ctx.tx version← global clock
17: if ¬revalidate read set value based(ctx) then
18: stm abort(ctx)
19: end if
20: end if
21: return cur value
22: end function
23:
24: function SLOW PATH COMMIT(ctx)

. read-set revalidation
25: label: start revalidate
26: if ctx.tx version 6= global clock then
27: ctx.tx version← global clock
28: if ¬revalidate read set value based(ctx) then
29: stm abort(ctx)
30: end if
31: end if
32: HTM Start()

. write the values
33: for addr, new value ∈ ctx.write set do
34: store(addr, new value)
35: end for

. verify that read-set revalidation is still valid and update the clock
36: if ctx.tx version 6= global clock then
37: htm abort(ctx)
38: end if
39: global clock ← global clock + 1
40: HTM Commit()
41: if the HTM failed NOT due to capacity then
42: goto start revalidate
43: else
44: fallback to slow-slow mode
45: end if
46: end function

3. Algorithm Details
Algorithm 1 shows the RH NORec fast-path implementation. On
start, it initiates a hardware transaction (line 2), and during the ex-
ecution performs completely pure reads and writes (line 10 and 6)
without any instrumentation. On commit, it increments the global
clock and commits the hardware transaction (lines 14-15). Note
that for RH hybrid correctness, the global clock update at the fast-
path commit is only required for a fast-path transaction that made
a write, and only when there is a concurrent slow-path transaction.

Algorithm 2 shows the RH NORec mixed slow-path implemen-
tation. On start, it reads the global clock to a local variable called
tx version (line 2). During the execution, the transaction performs
its writes to a local write-set buffer (line 6) , and on reads, it scans
the write-set for the read locations (lines 10-11). If the read loca-

Algorithm 3 RH NORec modifications for the all-software slow-
slow fallback
1: function FAST PATH START(ctx)
2: HTM Start()

. Verify that there are no concurrent all-software write-backs in
the process

3: if is taken(is all soft lock) then
4: HTM Abort()
5: end if
6: end function
7:
8: function SLOW PATH READ(ctx, addr)
9:

10: cur value← load(addr)
. Wait for concurrent all-software write-backs to finish

11: while is taken(is all soft lock) do
12: do nothing
13: end while
14:
15: end function
16:
17: function SLOW PATH COMMIT(ctx)
18:
19: HTM Start()
20:

. verifies that there is no all-software fallbacks
21: if is taken(is all soft lock) then
22: HTM Abort()
23: end if
24:
25: HTM Commit()
26: if the HTM failed NOT due to capacity then
27: goto start revalidate
28: else

. execute all-software commit
29: Slow Slow commit(ctx)
30: end if
31: end function
32:
33: function SLOW SLOW COMMIT(ctx)
34: lock acquire(is all soft lock)
35: if ¬revalidate read set value based(ctx) then
36: lock release(is all soft lock)
37: stm abort(ctx)
38: end if
39: for addr, new value ∈ ctx.write set do
40: store(addr, new value)
41: end for
42: global clock ← global clock + 1
43: lock release(is all soft lock)
44: end function
45:

tion is found in the write-set, then it returns its value from there.
Otherwise it reads the read location from the memory, adds it to
a read-set buffer, and verifies that the global clock has not been
changed, by comparing it to the tx version local variable. In case it
detects a clock change, it triggers a read-set revalidation, and upon
a successful read-set pass, the tx version variable is updated to the
new clock value (lines 13-21). On commit, the transaction samples
the global clock to a local global clock local variable, and executes
the read-set revalidation (lines 26-31). Then, it starts a small hard-
ware transaction that verifies that the clock has not been changed,
performs the actual writes, and increments the clock by 1 (lines 32-
40). If the short hardware transaction fails, the transaction restarts
the commit (lines 41-44). It is possible to restart as long as there is
no real conflict (revalidation failure) or no real hardware limitation
(capacity problem).

Algorithm 4 RH NORec optimization - using non-speculative op-
erations
1: function SLOW PATH OPT COMMIT(ctx)

. STEP 1: put the write-set locations into speculation (to be
monitored by HTM), and suspend HTM

2: HTM Start
3: for addr ∈ ctx.write set do
4: cur value← load(addr)
5: store(addr, cur value)
6: end for
7: HTM Suspend

. STEP 2: perform read-set revalidation outside HTM
8: if ctx.tx version 6= global clock then
9: ctx.tx version← global clock

10: if ¬revalidate read set value based(ctx) then
11: stm abort(ctx)
12: end if
13: end if

. STEP 3: resume HTM and finish
14: HTM Resume
15: for addr, new value ∈ ctx.write set do
16: store(addr, new value)
17: end for
18: global clock ← global clock + 1
19: HTM Commit
20: if the HTM failed NOT due to capacity then
21: goto STEP 1
22: else
23: fallback to slow-slow mode
24: end if
25: end function
26:

They key point of this design is that the hardware fast-path per-
forms the global clock update only at the commit. This is possible
due to the new mixed slow-path commit-time atomic write-back,
which is done by using a small hardware transaction. The atomic
slow-path write-back hides the intermediate updates, and exposes
only all of the writes or none of them to the concurrent fast-path
transactions. As a result, fast-path transactions cannot see partial
updates of the slow-paths, which involve some new and some old
values, and can see only all of the new values or all of the old ones.
In contrast, the original Hybrid NORec slow-path commit write-
back is executed piecemeal, write after a write, so it is possible for
the fast-paths to see slow-paths partial updates, and it is necessary
for the fast-paths to read the global clock on start, so that they will
immediately detect and abort upon a slow-path update initiation.

3.1 Fallback to an all-software slow-slow path

RH NORec uses a small hardware transaction to perform the slow-
path commit write-back atomically. This is crucial for the correct-
ness of the hybrid protocol, and reduces the hardware requirements
to be only the set of the write locations, not including the set of the
read locations. Therefore, a constant failure of this small hardware
transaction blocks the slow-path transaction from progress. This
may happen due to some hardware limitation, for example when
the set of the write locations cannot fit into the L1 cache. We expect
this situations to be rare, but still it may happen, and in this case we
provide a slow-slow mode fallback for the RH-NORec protocol.

Algorithm 3 shows the code modifications required to support
the all-software slow-slow mode. The slow-slow mode fallback
is similar to the original HY-NORec implementation that uses a
global lock. When the slow-path commit detects a constant fail-
ure of the small hardware transaction (lines 26-29), it retries in a
slow-slow commit mode where it acquires the global lock. Then,
while the lock is taken, it performs the read-set revalidation, the
write-back with global clock update, and the global lock release

(lines 34-43). The hardware fast-path transactions read this global
lock variable on the start and verify that it is free (lines 3-4). Since
this variable is cached and we expect execution of the slow-slow
mode to be rare, the cost of reading this lock variable is negligi-
ble. The fast-path hardware transactions abort upon a first fallback
to the slow-slow commit, and wait for it to finish. In addition, the
mixed-path reads inspect the global lock immediately after the read
of the location, and if the lock is acquired, then spin-loop on it till
its free (lines 11-12). Also, we disallow concurrent slow-path com-
mits while there is slow-slow mode commit by making the slow-
path commit small hardware transaction verify that the global lock
is not taken (lines 21-22).

3.2 Algorithm optimization for HTM with non-speculative
operations

The new IBM Power 8 ISA transactional memory specification
[1] defines a hardware transactional memory system with suspend-
resume operations. They allow to suspend a hardware transaction,
so that a non-transactional code can execute, and then resume
the transaction execution. An RH NORec algorithm based on this
feature can have an improved slow-path commit implementation
that completely eliminates the potential global clock abort window.

RH NORec slow-path commit performs the following steps: (1)
samples the global clock, (2) revalidates the read-set, (3) executes
a small hardware transaction that writes the write-set locations
atomically, and (4) revalidates that the current global clock is equal
to the one it has read before (in step 1). As a result, the slow-path
commit will restart itself, if the global clock changes between steps
(1) and (4). We can reduce this abort window if the hardware allows
non-speculative (non transactional) memory operations inside a
hardware transaction.

The main idea behind the new slow-path commit is to use the
hardware speculation as a protection for the write locations. The
new slow-path commit starts by executing a small hardware trans-
action that writes to every write location its current value and then
suspends itself. This puts the write locations into hardware mon-
itoring, and now it performs the read-set value-based revalidation
outside of the hardware transaction. Upon revalidation success, it
resumes the small hardware transaction, writes the new values to
the write locations, and commits it. If the hardware fails to commit,
it restarts the slow-path commit procedure. The whole slow-path
transaction is restarted only when there is a real conflict (revalida-
tion failure) or a real hardware limitation (capacity problem).

The new slow-path commit is correct because any concurrent
read or write of any of the monitored write locations will disallow
the small hardware transaction from committing successfully. The
behavior is similar to locking the write locations, with the differ-
ence that if someone touches a write location then it proceeds and
aborts the committing transaction. As a result, there is no need for
global clock reads and checks during the commit procedure, and
the only requirement is to increment the global clock on the com-
mit finish.

Algorithm 4 shows the new slow-path commit implementation.
The fast-path and the rest of the functions remain the same for this
version of RH NORec.

4. Performance Evaluation
We evaluated the performance of our new RH NORec algorithm
on an 8-way Intel Haswell chip with 4 cores, each multiplexing 2
hardware threads (HyperThreading). For our testing we used a red-
black tree benchmark. The algorithms we benchmarked were:

HTM Hardware TM: Transactions execute as pure hardware trans-
actions using the Intel Haswell RTM mechanism [13], and on

0.00E+00	

5.00E+06	

1.00E+07	

1.50E+07	

2.00E+07	

2.50E+07	

3.00E+07	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

O
pe

ra
3o

ns
	
 p
er
	
 s
ec
on

d	

number	
 of	
 threads	

HTM	

Standard	
 HyTM	

TL2	
 STM	

RH-­‐NORec-­‐10	

Hy-­‐NORec-­‐10	

RH-­‐NORec-­‐100	

Hy-­‐NORec-­‐100	

Throughput:	
 40%	
 muta0ons	
 	

0.00%	

10.00%	

20.00%	

30.00%	

40.00%	

50.00%	

60.00%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

A
bo

rt
s	

Ra

3o
	

number	
 of	
 threads	

HTM	

RH-­‐NORec-­‐10	

Hy-­‐NORec-­‐10	

RH-­‐NORec-­‐100	

Hy-­‐NORec-­‐100	

Aborts:	
 40%	
 muta0ons	
 	

0.00E+00	

5.00E+06	

1.00E+07	

1.50E+07	

2.00E+07	

2.50E+07	

3.00E+07	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

O
pe

ra
3o

ns
	
 p
er
	
 s
ec
on

d	

number	
 of	
 threads	

HTM	

Standard	
 HyTM	

TL2	
 STM	

RH-­‐NORec-­‐10	

Hy-­‐NORec-­‐10	

RH-­‐NORec-­‐100	

Hy-­‐NORec-­‐100	

Throughput:	
 10%	
 muta0ons	
 	

0.00%	

2.00%	

4.00%	

6.00%	

8.00%	

10.00%	

12.00%	

14.00%	

16.00%	

18.00%	

20.00%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

A
bo

rt
s	

Ra

3o
	

number	
 of	
 threads	

HTM	

RH-­‐NORec-­‐10	

Hy-­‐NORec-­‐10	

RH-­‐NORec-­‐100	

Hy-­‐NORec-­‐100	

Aborts:	
 10%	
 muta0ons	
 	

Figure 1. Red-Black tree results. The upper graphs show the throughput for 40% and 10% mutations in the tree, and the bottom graphs show
the corresponding abort rates. We can see a clear performance advantage of RH-NORec over HY-NORec, and from the lower graphs it is
clear that this is completely correlated with the higher rate of HY-NORec aborts due to reading the global clock into the HTM transactional
at the start of each transaction. It is also encouraging to see that RH-NORec delivers performance that is very close to that of pure HTM.

failure restart as pure hardware transactions. This indicates the
best performance that can be achieved by the HTM mechanism.

Standard HyTM The Standard Hybrid Transactional Memory: A
state-of-the-art hybrid TL2-Style TMs [10]. The software slow-
path executes a TL2 STM and the hardware fast-path reads and
writes inspect the per location metadata (using a single “if”
condition check).

TL2 A TL2 STM implementation [7], that uses a GV6 global
clock.

HY-NORec Original Hybrid Norec: The algorithm of Dalessandro
et. al [4]. The hardware fast-path reads the global clock on start
and increments it on commit. The software slow-path executes
the NOrec STM. There are two variants: HY-NORec-10 and
HY-NORec-100. The first executes 10% of the fast-path aborted
transactions in the mixed slow-path and the remaining 90%
retry the fast-path, while the second executes 100% of the aborts
in the slow-path.

RH-NORec Reduced Hardware NORec: This is our new hybrid
TM. The hardware fast-path only updates the global clock at
the end of the transaction during the hardware commit, the
mixed software slow-path executes the transaction body in pure
software, and the transaction commit writes by using a small
hardware transaction. In a similar way to HY-NORec, there
are two variants: RH-NORec-10 and RH-NORec-100. The first
executes 10% of the fast-path aborts in the mixed slow-path
and the remaining 90% of transactions retry in the fast-path;
the second executes 100% of the aborts in the slow-path.

The red-black tree we use was derived from the java.util.TreeMap
implementation found in the Java 6.0 JDK. That implementation
was written by Doug Lea and Josh Bloch. In turn, parts of the Java

TreeMap were derived from Cormen et al. [3]. The red-black tree
implementation exposes a key-value pair interface of put, delete,
and get operations. If the key is not present in the data structure,
put will put a new element describing the key-value pair. If the key
is already present in the data structure, put will simply insert the
value associated with the existing key. The get operation queries
the value for a given key, returning an indication if the key was
present in the data structure. Finally, delete removes a key from the
data structure, returning an indication if the key was found to be
present in the data structure.

The benchmark allows us to control the tree size and the fraction
of write transactions executed, called mutation ratio. We execute
every run for 10 seconds, and report the average number of opera-
tions completed per second.

Figure 1 shows the results for a red-black tree with 1K nodes and
40% and 10% rates of mutation respectively. The top two graphs
show the throughput results, and bottom two graphs show the abort
ratios. We performed the same benchmarking for larger trees, with
5K-10K nodes, and saw similar results. Increasing the tree size
beyond 10K nodes makes the hardware fast-path abort too often,
so that most of the time slow-paths execute, and the advantage of
using an HTM is lost.

Looking at Figure 1, we note that pure hardware transactions
executed using the Intel RTM hardware transactional mechanism
have a performance deterioration after 4 threads. The reason for
this is the HyperThreading mechanism that multiplexes additional
new threads, so 2 threads run on every core, from 5 to 8 threads.
This makes every 2 threads on the same core share an L1 cache, on
which they conflict often.

Looking at the results of our benchmark, we can see that there is
a big advantage of HTM over the TL2 STM, and that the Standard
HyTM algorithms eliminate almost all of this advantage due to

their need to inspect metadata on each read or write. Standard
HyTM performance is close to that of the TL2 STM and is very
far from the HTM’s potential. The HY-NORec and the RH-NORec
algorithms eliminate the Standard HyTM instrumentation from the
fast-path hardware transactions, and accordingly achieve a better
performance.

In the 40% mutation benchmark (upper left graph) we have
two types of executions for the RH-NORec and HY-NORec. One
that forwards 10% of the hardware fast-path aborts to the mixed
slow-path and the remaining 90% retry again in the fast-path, and
another that forwards all of the 100% of the aborts to the slow-
path. This percentage is indicated by the line name. We can see
that RH-NORec-10 outperforms HY-NORec-10 by a factor of 1.7,
and RH-NORec-100 outperforms HY-NORec-100 by a factor of
2.4. Overall, RH-NORec is able to get very close to the HTM’s
performance, and we can see this with RH-NORec-10.

The performance difference is perhaps mostly explained by the
difference in the algorithm’s abort rates. Analysis of the abort ratios
for the 40% mutation case (bottom left graph) shows us that there is
a significant difference in the aborts between the RH-NORec and
HY-NORec. The lines correspond to the algorithms in the upper
left graph of throughput. For the 10% slow-paths case, HY-NORec
suffers a 5 times higher abort rate compared to the RH-NORec,
and for the 100% slow-path its abort rate is still 2 times higher. The
main reason for this is the fact that HY-NORec reads the global
clock on the hardware fast-path start. As a result, a HY-NORec
slow-path update of the global clock triggers an abort of all current
hardware transactions, which introduces unnecessary aborts. In
contrast, the RH-NORec fast-paths access the global clock only at
the commit point, and therefore avoids all of these aborts.

In the 10% mutation benchmark (upper right graph), we can see
that there is almost no difference between RH-NORec-10 and RH-
NORec-100. Both of them exhibit a very low abort ratio. But, there
is a difference for HY-NORec-10 and HY-NORec-100, where HY-
NORec-10 is able to get close to RH-NORec performance. This
is due to the sensitivity of the HY-NORec to slow-path aborts that
may result in a system-wide abort of all hardware transactions. The
HY-NORec-10 exhibits 7% aborts in total (look at the bottom right
part of the graph), while the HY-NORec-100 exhibits as high as
19% aborts; this makes a big difference in the performance.

Analysis of the aborts for the 10% mutation case shows the
same behavior as for the 40% mutation. RH-NORec incurs approx-
imately 2% aborts in general, and HY-NORec incurs 7% and 19%,
which is a 3 - 10 times difference. As before, we can see a correla-
tion between the aborts and the resulting throughput.

Acknowledgments
This work was supported in part by NSF grants CCF-1217921 and
CCF-1301926, DoE ASCR grant ER26116/DE-SC0008923, and
by grants from the Oracle and Intel corporations.

References
[1] Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek

Williams, and Hung Le. Robust architectural support for transactional
memory in the power architecture. In ISCA, pages 225–236, 2013.

[2] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael
Hohmuth, Martin Pohlack, Christof Fetzer, Martin Nowack, Torvald
Riegel, Pascal Felber, Patrick Marlier, and Etienne Rivière. Evaluation
of amd’s advanced synchronization facility within a complete transac-
tional memory stack. In Proceedings of the 5th European conference
on Computer systems, pages 27–40, New York, NY, USA, 2010. ACM.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, second edition edition, 2001.

[4] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark
Moir, Michael L. Scott, and Michael F. Spear. Hybrid norec: a case

study in the effectiveness of best effort hardware transactional mem-
ory. SIGPLAN Not., 46(3):39–52, March 2011.

[5] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec:
streamlining stm by abolishing ownership records. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’10, pages 67–78, New York, NY,
USA, 2010. ACM.

[6] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco,
Mark Moir, and Daniel Nussbaum. Hybrid transactional memory.
SIGPLAN Not., 41(11):336–346, October 2006.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proc.
of the 20th International Symposium on Distributed Computing (DISC
2006), pages 194–208, 2006.

[8] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu,
and Anthony Nguyen. Hybrid transactional memory. In Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’06, pages 209–220, New York, NY,
USA, 2006. ACM.

[9] A. Matveev and N.Shavit. Reduced hardware transactions: a new
approach to hybrid transactional memory. In SPAA, pages 11–22,
2013.

[10] Torvald Riegel, Patrick Marlier, Martin Nowack, Pascal Felber, and
Christof Fetzer. Optimizing hybrid transactional memory: the impor-
tance of nonspeculative operations. In Proceedings of the 23rd ACM
symposium on Parallelism in algorithms and architectures, SPAA ’11,
pages 53–64, New York, NY, USA, 2011. ACM.

[11] P. Felber T. Riegel and C. Fetzer. A lazy snapshot algorithm with
eager validation. In 20th International Symposium on Distributed
Computing (DISC), September 2006.

[12] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Mar-
tin Ohmacht, Christopher Barton, Raul Silvera, and Maged Michael.
Evaluation of blue gene/q hardware support for transactional memo-
ries. In Proceedings of the 21st international conference on Parallel
architectures and compilation techniques, PACT ’12, pages 127–136,
New York, NY, USA, 2012. ACM.

[13] Web. Intel tsx
http://software.intel.com/en-us/blogs/2012/02/07/transactional-
synchronization-in-haswell, 2012.

