
Exploring the Performance and Programmability
Design Space of Hardware Transactional Memory

Mike Dai Wang
U. of Toronto

dai.wang@mail.utoronto.ca

Mihai Burcea
U. of Toronto

burceam@eecg.toronto.edu

Linghan Li
U. of Toronto

linghan.li@mail.utoronto.ca

Sahel Sharifymoghaddam
U. of Toronto

sahel.sharifi@gmail.com

Greg Steffan
U. of Toronto

steffan@eecg.toronto.edu

Cristiana Amza
U. of Toronto

amza@eecg.toronto.edu

Abstract
In this paper, we study the programmability and performance de-
sign space of the new hardware transactional memory (HTM)
framework provided by Intel’s Haswell architecture. Towards this,
we first present an Intel TSX performance characterization using
a simple array access microbenchmark. Through a comprehensive
study we identify several important trends, such as, the relation-
ships between, transaction size, write ratio inside transactions, retry
count, and transaction abort rate and performance.

Next, we explore code transformations such as, computation
splitting and privatization, for optimizing the performance of Mol-
dyn, a molecular dynamics simulation from the CHARMM [4]
molecular dynamics simulation and analysis package. We leverage
our TSX performance characterization to guide and minimize our
parametrization efforts for our Moldyn code transformations.

We found that a hardware TM solution using computation split-
ting and privatization can be both easier to program and also out-
perform a hand-tuned fine-grain pthread locks solution including
those same optimizations.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: parallel programming; D.3.3 [Language Constructs
and Features]: concurrent programming structures; D.4.1 [Oper-
ating Systems, Process Management]: concurrency, mutual exclu-
sion

Keywords Transactional Memory, Speculative Execution

1. Introduction
Transactional Memory (TM) [6, 15, 16] is a promising parallel
programming paradigm for exploiting the increasing parallelism
available in chip multiprocessors. It is aimed to provide correctness,
performance and improved programmability over traditional lock-
based synchronization approaches. Despite some recently reported

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Transact ’14, March 2, 2014, Salt Lake City, UT, USA.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

successes with moderately complex realistic applications such as
CAD tools like VPR [2, 3], games [15] or synchronization within
an operating system [17], TM adoption is not yet widespread. This
is partially due to the significant amounts of overhead associated
with Software Transactional Memory (STM) systems. However,
with the recent trend of increased Hardware Transactional Memory
(HTM) support in commercial systems - e.g., in IBM’s BGQ [11,
19] and in Intel’s Transactional Synchronization Extensions (TSX)
in the Haswell architecture [21] - research focus on uses of TM for
exploiting parallelism is now more relevant than ever before.

With the newly introduced TSX extensions, speculative execu-
tion of transactions can be done in hardware, and locks protect-
ing critical sections can be elided whenever possible. This has the
potential of greatly improving application performance, by execut-
ing critical sections optimistically, rather than through unnecessary
locking. However, HTM is no magic bullet, and brings its own con-
straints in the form of limitations imposed by the capacity of the
associated hardware resources. In this paper, we explore the design
space for opportunities towards a best of all worlds design, where
the performance advantages of HTM could be coupled with pro-
grammability and flexibility advantages similar to the STM.

Towards this, we first use off-line profiling on a simple micro-
benchmark to extensively explore the performance sensitivity of
the HTM to a variety of application patterns and HTM configura-
tion parameters. Our profiling pass identifies the most important
parameters and the most likely guidelines for reducing our pro-
gramming and configuration effort for other applications. Based
on the profiling results, we design a set of optimizations that can
be manually applied to an application. We plan to extend the in-
vestigation presented in this paper to implement semi-automated
support for i) leveraging existing profiling data to narrow down the
range of the most beneficial parameter settings corresponding to
specific application patterns and ii) applying the manual optimiza-
tions we introduce in a generic way. In the following, we present
our investigation in more detail.

We use an array access microbenchmark which can be exten-
sively parametrized for HTM performance characterization and
profiling purposes. The performance model derived from our pro-
filing shows that HTM performance depends on several factors, in-
cluding transaction size, retry count, the write ratio of the applica-
tion, the randomness in the access pattern of the application and the
flavor of Intel HTM (HLE or RTM).

We find that the HTM performance is most sensitive to the trans-
action size, and the number of retries the HTM is configured with.

Moreover, the functional dependency of performance to each of
the above factors, is non-linear, thus making our profiling pass nec-
essary towards guiding programming/configuration effort for reg-
ular applications. For example, performance depends on transac-
tion size in a mountain-like function: the optimum solution is not
encountered at either end of the spectrum, but on an in-between
plateau. Even more of interest is that there is a significant jump in
performance at a certain point with increasing the retry count.

We use the profiling results, and the associated performance
models for finding the best performance/programmability sweet
spot with the HTM when programming a molecular dynamics sim-
ulation, called Moldyn, from the CHARMM [4] molecular dynam-
ics simulation and analysis package. We design and manually code
the following code transformations: i) computation splitting: chop-
ping coarse grained transactions into smaller transactional units
that can still be executed in parallel and ii) data and computation
privatization: privatizing certain data and moving parts of compu-
tations outside of transactions.

We leverage the performance models derived with the array
micro-benchmark to drive our parameter selection e.g., for the
size of transactions and number of retries. This allows us to avoid
running all possibilities in order to fine tune Moldyn, when using
our code transformations.

For both benchmarks, we targeted programmability and ease
of use by utilizing a previous STM system developed locally,
libTM [6, 15, 16] in order to integrate its simple to use API with
Intel TSX. The libTM API allows application developers to easily
create threads, parallelize functions and set up transactional be-
gin and end scopes. Thus, tedious implementation details, such as,
thread creation, thread pooling, and implicit barrier creation are
all transparent to the programmer. We extend this API to include
Intel TSX support and fallback locking. This API is then leveraged
in both benchmarks we used in this study with ease. Further fine
tuning and manual optimizations were done in addition to the un-
derlying libTM features and will be automated in our upcoming
work.

We present results for our Intel TSX performance characteri-
zation using the array access microbenchmark and the associated
trends contributing to performance improvements and abort rate
reductions. We also present results for our performance enhancing
code transformations with Moldyn. All experiments were run on a
PC with 4 2-way Hyperthreaded Intel i7-4770 cores that supports
Intel TSX. The solution space for Moldyn which we investigated
consists of software TM, hardware TM using Intel TSX, regular
and optimized Pthread locking versions. The best solution we found
through our investigation is a manually tuned HTM solution that
uses lock elision with a global-lock fallback path. The optimized
HTM solution remarkably combines both better performance and is
easier to parallelize compared to our most fine-tuned solution of the
same application using Pthread locks. In Moldyn, using 8 threads
we observed a speedup of 2.76x compared to a sequential base-
line version. We further observe that the hand-tuned HTM solution
provides similar parallelism with a fine-grained locking solution
without incurring the increased memory footprint of maintaining
the fine grained locks. Hence, the HTM provides a better perform-
ing solution (by approximately 10%) with less programming effort
than fine-grained locking.

The remainder of this paper is organized as follows: Section 2
provides background information. Section 3 describes experiment
setup. Section 4 describes our case study on characterizing TSX.
Section 5 discusses the results and optimizations when using TSX
to evaluate a realistic application: Moldyn. Section 6 provides anal-
ysis and discussion on the impact of optimizations. Section 7 looks
at related work in this field. Section 8 provides a glimpse of our
upcoming work and finally Section 9 concludes our findings.

2. Background
2.1 Intel Transactional Synchronizations Extensions
Intel Transactional Synchronizations Extensions (Intel TSX) [13,
21] are a recent addition to the Intel architecture that provide pro-
grammers with a way to leverage the support for hardware trans-
actional memory offered by the Haswell architecture. Intel TSX
comes in two basic flavors: the first, called Hardware Lock Elision
(HLE), is intended to help programmers to benefit from the hard-
ware transactional support for already-existing applications that
employ lock-based synchronization. HLE makes available prefixes
to existing instructions that allow the hardware to first attempt ex-
ecution by speculatively eliding locks in the code; if speculation
fails, execution of the speculative section is restarted, with the locks
actually being acquired this time.

The second flavor of hardware transactional support is called
Restricted Transactional Memory (RTM). RTM provides an inter-
face allowing programmers to specify a region of code that will
be executed transactionally. In the case of an abort, the transaction
can either be retried in hardware or fallback to a separately defined
software path.

In addition to the instruction extensions, hardware transactions
supported by TSX utilize the CPU cores’ L1 caches and the under-
lying cache coherence protocol for conflict detection. Transactions
are tracked at cache line granularity (64 bytes on our experiment
platform).

Further details on Intel TSX implementation and analysis are
available in the references cited above.

In this study, we focus our efforts on RTM to take advantage of
the flexibility in defining a custom software fallback path and the
opportunity for possible automated optimizations in the future.

2.2 LibTM STM Library
libTM [14, 15] is a highly-customizable STM library written in
C++ with an intuitive API. A programmer can use libTM to paral-
lelize an application by following three steps: first, data structures
that will be used inside transactions must be converted to libTM-
specific data types (tm types); libTM tracks conflicts by using op-
erator overloading for these tm types.

Second, the infrastructure of parallel threads can easily be cre-
ated and managed; libTM offers a convenient way to manage
a thread pool and create implicit barriers through the following
macros:

• CREATE TM THREADS (num threads);
• DESTROY TM THREADS (num threads);
• PARALLEL EXECUTE (num threads, parallel func, arg);

In the PARALLEL EXECUTE macro, the parallel func is a
function that will be executed in parallel (which may contain mul-
tiple transactions, or call other functions that may contain transac-
tions), and takes arg and the id of the thread executing it as argu-
ments.

Finally, BEGIN TRANSACTION() and END TRANSACTION()
constructs let the programmer create a scope to enclose the specific
portion of code that should be executed transactionally.

The underlying libTM STM implementation supports a variety
of conflict detection and conflict resolution policies to allow for
maximum flexibility.

2.3 LibTM TSX Support
To take advantage of the performance benefits provided by Intel
TSX while maintaining programmability, libTM has been modi-
fied to support TSX / RTM as its hardware transactional memory
component. Specifically:

• The libTM API remains unchanged and transparent to ensure
the same programmability and minimal programming effort
across benchmarks.

• To evaluate TSX / RTM fairly and free from the influence of
STM overhead, we completely detach libTM’s STM execution
core and the associated statistics tools.

• XBEGIN, XEND, XTEST instructions and various other tools
provided by the Intel TSX / RTM instruction set extensions
are utilized to execute transactions in hardware as opposed to
using the STM. We note that the flexibility of altering conflict
detection and conflict resolution policies is no longer within the
control of the programmer nor libTM.

• RTM alone does not provide any progress guarantees for an
application: a hardware transaction may keep retrying (and
aborting) indefinitely. To ensure progress, we implement a
spinlock-based software fallback path for every RTM trans-
action started. TSX will speculatively attempt to elide the spin
locks but should any transactions abort, critical sections will be
protected by acquiring the spin locks in software. Our imple-
mentation supports both multiple fine-grained spin locks and
one global spin lock as the software fallback path.

• In order to facilitate transaction retries, users can provide a pa-
rameter to specify and adjust the number of retries in RTM
before falling back to software execution. The retry parameter
combined with the hardware status registers [1] allow libTM
to maximize the likelihood of transactions committing success-
fully.

3. Experimental Setup
Our experiments are conducted on a desktop PC with 4 2-way
Hyperthreaded Intel i7-4770 Cores at 3.4GHz and 12GB of RAM,
4x32KB L1 caches, 4x256KB L2 caches and a shared 8MB L3
cache. All benchmarks are written in C++ and compiled with GCC
4.8.1 to run on a 64 bit Ubuntu Linux with 3.5.0-40 kernel. Threads
are bound to processors ensuring each thread run exclusively on
its (Hyperthreaded) core. All results collected represent an average
over 3 runs.

4. Case Study: Array Access Microbenchmark
In this section, we provide detailed descriptions of how we charac-
terize TSX performance using a simple microbenchmark and dis-
cuss the trends we observe based on the collected results.

4.1 Microbenchmark Overview
To evaluate and characterize HTM, we conduct a case study using
a synthetic array access microbenchmark. As shown in Figure 1,
the benchmark maintains a one dimensional integer array where its
elements are accessed through either reads or writes based on pre-
generated access patterns. The microbenchmark accepts 3 tuning
parameters: num threads, write ratio (percentage of writes in-
side a transaction), and txn size (number of array accesses inside
a transaction). The generated access patterns can be in one of two
access ”modes” to model typical application behaviour: ”random”
mode is self-explanatory; in ”contiguous” mode, an offset in the
array is randomly chosen for each transaction, and the transaction
will access the subsequent txn size elements starting from that
offset. The order of reads and writes is also randomly chosen but
based on write ratio.

For the purpose of this study, we set the main integer array to
3000 elements and the problem size to 5 million iterations. Through
varying the tuning parameters, we aim to identify possible trends
and effects of each parameter on TM-related metrics. Specifically

ArrayAccessBenchmark() {
GenerateAccessPattern();

for every iteration in N iterations {
BEGIN_TRANSACTION()
AccessArray() //read/write based on access pattern
END_TRANSACTION()

}
}

Figure 1. Pseudo code for Array Access Microbenchmark

Figure 2. Abort rate vs. txn size vs. write ratio for the array
access microbenchmark with random accesses, 4 threads, and 0
transaction retries.

we measured: abort rate (percentage of transactions that did not
commit out of the total number of transactions started), transaction
throughput (number of shared data accesses per second), and trans-
action retry count.

4.2 TSX Characterization Results
Next we present a representative subset of our characterization
results.

Figure 2 shows a 3 dimensional plot of abort rates vs. trans-
action size vs. write ratio for random access patterns. For read-
dominated transactions, the abort rate becomes very high when
transaction size approaches 20 accesses. For write-dominated
transactions, transaction sizes larger than 10 accesses experience
a sharp rise in abort rates. We observe a similar trend with con-
tiguous access patterns, but with slightly higher transaction size
ceilings due to less cache thrashing.

Figure 3 shows a simplified snapshot of array access throughput
plotted against transaction size and write ratio for random access
patterns. We observe that a ”plateau” or performance peak exists
at write ratio of 10 and txn size of 40 resulting in a throughput
of approximately 5700 shared accesses per second. Our findings
show that overall performance does not necessarily correlate with
the smallest transaction size and likely is application-specific.

Finally, Figure 4 shows that for certain transaction sizes (100
accesses in this particular case), restarting hardware transactions 4
or 5 times significantly reduces abort rate by up to 80%. Repeat-
ing the experiment with random access pattern produced similar
results.

Figure 3. Throughput vs. txn size vs. write ratio for the array
access microbenchmark with random accesses, 4 threads, and 0
transaction retries.

Figure 4. Abort rate vs. write ratio and the number of retries for the
array access microbenchmark with contiguous accesses, 4 threads.

4.3 TSX Performance Trends
With these results in mind, we summarize 5 trends contributing to
better TSX performance and lower transaction abort rates. They are
listed below:

1. Transaction size directly correlates with abort rates and smaller
transactions exhibit higher likelihood of committing.

2. Low abort rate does not always guarantee to higher overall
application performance. Rather, a ”sweet spot” of performance
likely exists for applications using Intel TSX.

3. Contiguous access consistently outperforms random access
when comparing abort rates. Such relationship directly relates
to the utilization of cache locality and the amount of cache
thrashing due to the access pattern.

4. Retrying aborted hardware transactions multiple times has the
potential of drastically reducing abort rate.

5. For certain parameter combinations, HLE outperforms RTM
in terms of transaction abort rates. However, investigation on

HLE performance is still ongoing at the time of writing and the
focus of this study will be on RTM with reasons explained in
Section 2.1.

5. Evaluation on Realistic Benchmark: Moldyn
In this section, we evaluate the performance impact of TSX on a
more realistic application: Moldyn. Detailed description of differ-
ent versions of Moldyn and the details of our optimizations will
be presented. Specifically we aim to translate the trends identified
from the case study in Section 4 into code transformation and opti-
mization techniques. We will present evaluation results comparing
different versions of Moldyn in terms of runtime, scalability, and
abort rate.

Moldyn is a molecular dynamics simulation in 3 dimensional
space that iterates over a number of time steps. It computes interac-
tion forces between neighboring molecules in the ComputeForces
stage, then updates molecule coordinates and velocities based
on the previously computed forces in the Update stage. The
interacting neighbors list of every molecule is recomputed in
BuildNeighbors after a fixed number of time steps. Finally, the
overall system energy and velocities are tracked and logged after
each time step to ensure application correctness. Figure 5 shows a
simplified sequential version of how Moldyn works.

Moldyn() {
InitializeMolecules();
for every time step in N timesteps {

every Kth time step {
UpdateNeighbours();

}
ComputForces();
Update();

}
}

Figure 5. Simplified Pseudo code for Moldyn.

In this evaluation we model a 3D space containing 32,000
molecules with randomly generated, uniformly distributed initial
positions and the simulation lasts 30 time steps.

5.1 Evaluation Baselines
The original sequential version(seq) of Moldyn is used as a start-
ing point, where all molecule force calculations and energy updates
are done with 1 single thread. Next, the sequential version is par-
allelized using POSIX threads (Pthreads) but with 3 different syn-
chronization mechanisms: Locks, STM, and HTM. We list the cor-
responding parallelized baselines accordingly below:

• Pthread mutex locks and explicit barriers are used to create
coarsed-grained lock based lock.coarse and fine-grained lock
based lock.fine.

• The STM system used in the evaluation is libTM as described in
Section 2.2. As STM specific evaluation and optimizations are
beyond the scope of this study, we chose the best performing
version (libtm.stm) as a comparison reference. libtm.stm uses
”fully optimistic” conflict detection and ”abort readers” conflict
resolution policies.

• There are also 2 HTM baselines using the libTM library with
TSX support as described in Section 2.3. First is a naive ver-
sion of Moldyn with extremely coarse transactions (tsx.coarse)
containing entire computation loops of all molecules. Such
coarse transactions can potentially result in large amounts of

cache conflicts leading to aborts. Second, a version with trans-
actions containing the smallest possible independent computa-
tions(tsx.fine) accessing only 1 molecule is evaluated.

5.2 Optimizing Moldyn
In this section, we provide details on how specific code transfor-
mations and optimizations are translated from the case study trends
to Moldyn. As a result, we create 2 optimized code versions in
lock.opt and tsx.opt.

Through profiling and parallelizing Moldyn, we identify sev-
eral critical sections within the code base. Using the function
ComputeForces as an example, we list 4 categories of code
transformations and optimizations below. Optimizations 1 and 2
apply to both lock.opt and tsx.opt, whereas optimizations 3 and 4
apply more directly to tsx.opt.

1. Data Privatization: As with any parallelization effort, privati-
zation of shared data can lead to less contention and smaller
critical sections. Shared global variables used to accumulate
system-wide measurements (total energy, etc) are privatized in
this case.

2. Computation Privatization: Corresponding to data privatiza-
tion, CPU intensive calculations such as finding 3 dimensional
displacement between molecules are moved outside of critical
sections and executed in parallel.

3. Computation Splitting & Merging: Transactions that are too
large or too small could result in high abort rates and possi-
bly low performance. tsx.opt tries to find the ”sweet spot” by
computing each pair of molecule updates inside a single trans-
actions as opposed to thousands of molecules or only a single
molecule. This logical transaction size allows tsx.opt to max-
imize RTM performance without the danger of compromising
atomicity.

4. Multiple Transaction Retries: Aborted transactions in tsx.opt
have the opportunity to retry committing in hardware multiple
times instead of immediately taking the software fallback path.

As a result of the aforementioned optimizations, we show the
pseudocode for both lock.opt in Figure 6 and tsx.opt in Figure 7.

ComputeForces() {
for each pair i, j assigned to thread {
Read molecule positions into temporaries
Compute 3D displacement
Calculate force delta due to interaction

// fine-grained locks
lock (molecule i)
Update molecule i 3D force vector
unlock (molecule i)
lock (molecule j)
Update molecule j 3D force vector
unlock (molecule j)

// data privatization
Accumulate per thread energy totals

}
lock (total energy)
Accumulate system wide total energy
unlock (total energy)

}

Figure 6. Pseudo code for the optimized lock based version of
ComputeForces in Moldyn.

ComputeForces() {
for each pair i, j assigned to thread {

// computation privatization
Read molecule positions into temp.
Compute 3D displacement
Calculate force delta due to interaction

// computation splitting & merging
BEGIN_TRANSACTION()
Update molecule i 3D force vector
Update molecule j 3D force vector
END_TRANSACTION()

// data privatization
Accumulate per thread energy totals

}
BEGIN_TRANSACTION()
Accumulate system wide total energy
END_TRANSACTION()

}

Figure 7. Pseudo code for the optimized TSX version of
ComputeForces in Moldyn.

Figure 8. Scaling results for Moldyn. The Y axis shows normal-
ized speedup over the sequential version as a baseline.

5.3 Code Transformation Results
Next, we compare the results of optimized Moldyn against baseline
versions.

Figure 11 shows speedup comparisons of different versions
of Moldyn in this experiment. In the best case, using 8 threads
we show tsx.opt achieves up to 2.76x speedup compared to the
baseline version and even beats the performance of lock.opt by
approximately 10%.

Figure 8 shows the scalability factors of all versions of Moldyn
as we increase the number of threads. We observe good scalability
for tsx.opt, outperforming all other versions.

Table 1 shows the abort rate statistics of the TSX/RTM versions.
We observe a significant reduction in both transaction count and
abort rates with tsx.opt.

Figures 9 and 10 show the effects of increasing RTM transac-
tion retry count. In the 8 thread case of Moldyn, allowing aborted
transactions to retry up to 4 times can produce approximately 6.5x
speedup versus if the aborted transactions take the fallback path
right away (i.e., no retries). This also greatly reduces the abort rate

Figure 11. Speedup comparison for Moldyn, normalized with respect to the baseline sequential version.

Version 1 thread 2 threads 4 threads 8 threads
txn count abort rate txn count abort rate txn count abort rate txn count abort rate

tsx.coarse 62 52% 124 52% 248 52% 496 52%
tsx.fine 211M 0% 211M 11% 211M 73% 211M 86%
tsx.opt 75M 0% 75M 0% 77M 2% 87M 13%

Table 1. Transaction count and abort rates for Moldyn using Intel TSX/RTM.

Figure 9. Speedup vs number of retries for Moldyn. The Y axis
shows normalized speedup over the version with no retries as a
baseline.

Figure 10. Abort rates vs number of retries for Moldyn.

of the total transactions from approximately 90% to approximately
10%.

Further analysing the presented results, we show that with both
lock.coarse and tsx.coarse, there is very little performance im-
provement. tsx.coarse tracks the performance of lock.coarse sim-
ply due to all transactions aborting and taking the fallback path
turning the tsx.coarse version into a coarse-grained locked version.
These results are not surprising due to the contentious nature of
Moldyn stages and the naively implemented coarse-grained criti-
cal sections. This shows that more than naive efforts are needed to
achieve meaningful speedup.

Next we examine a set of fine-grained versions with both locks
and RTM transactions (Figure 11). While the lock.fine version
eventually achieves a speedup with 8 threads, the large amounts
of locking, unlocking and the locks themselves can be a significant
source of overhead. The tsx.fine version does not perform well and
results in slowdowns in all cases. We further discuss the reasoning
in Section 6.

To limit the scope of this study, we only present the best per-
forming STM implementation of Moldyn: libtm.stm. Due to high
STM overhead, libtm.stm results in a slowdown of 6.3x with 8
threads compared to the baseline. However, we do note that the
scalability of the STM system trends positively as we increase the
number of threads as shown in Figure 8.

6. Analysis and Discussion
In the following section, we analyze in detail the obtain results
and provide reasoning behind our applied optimizations. Our goal
of this analysis and the subsequent discussions is to determine if
and how these TSX related optimizations can be applied in a more
generic fashion towards other applications.

6.1 Privatization
Privatization is an often used technique when parallelizing applica-
tions, and Moldyn is no exception.

In Moldyn, most critical sections are both large and computa-
tionally intensive. They perform time-consuming calculations such
as finding out the three-dimensional displacements between inter-
acting molecules, and computing changes in kinetic energy due to
velocity changes. By applying computation privatization, critical
sections are reduced to smaller sizes and more relevant calcula-
tions.

In addition to computationally intensive code sections, we also
observe heavy data contention. Our experiments using the Intel Per-
formance Counter Monitor (PCM) tool indicate that approximately
75% of RTM transaction aborts are due to memory contention (ex-
periments not shown for brevity). The sources of contention mostly
stem from frequent reads and updates of shared variables. These in-
clude major data structures such as arrays tracking molecule forces,
velocities, positions, interacting partners and accumulated kinetic
energy and temperature counters. By privatizing counters, modify-
ing shared data structures, and padding molecule objects for better
cache line alignment, we reduce the amount of overall data con-
tention significantly.

As indicated in Figure 11, performance improvements between
lock.fine and lock.opt versions are mainly due to privatization.
And in the case of TSX based versions, privatization also plays
a major role in producing a meaningful speedup. This leads us to
believe that applying privatization appropriately can produce better
performance in most applications.

6.2 Optimal Transaction Size
Section 4.2 shows that transaction size is an important factor to
RTM transaction commit success rate. Examining abort details for

RTM transactions in tsx.coarse, we observe that large transactions
(containing multiple iterations of computation or update loops)
make up almost the entirety of the 52% aborted transactions (Ta-
ble 1). It is apparent that the large size of these transactions is
stressing the L1 cache resources, leading to repeated aborts.

On the opposite end of the spectrum in tsx.fine, the abort rate
decreases if we map the fine-grained locks to small transactional
regions containing 1 iteration of only 1 molecule update; but having
very small transactions leads to a drastic increase in the number of
total transactions: from 248 to 211 million. Although fine-grained
locks reduce false sharing, fine-grained transactions may worsen
performance due to the cache line size tracking granularity of RTM.

These results are consistent with the ones obtained with the
array access microbenchmark shown in Figure 3, where a low abort
rate does not necessarily lead to better performance (similarly due
to the overhead caused by a large number of transactions).

The next natural step on the optimization path is to find the
”sweet spot” of transaction size, abort rate and overall performance.
Guided by the TSX characterization results from our case study, we
did not need to exhaustively search for all possible transaction sizes
in Moldyn. Instead we take advantage of modified molecule objects
from privatization, which are padded to align with cache line sizes.
We close in on the ”sweet spot” by splitting large transactions into
computing 1 pair of interacting molecules. Calculating molecule
pairs in a transaction not only ensures atomicity, but the size change
in tsx.opt also results in performance improvements as shown in
Section 5.3.

We do note however, that such ”sweet spots” in transaction size
are application-specific and are not trivial to find. Computation
splitting also needs to be done with considerable care to provide
atomicity guarantees. Our characterization provides a guideline but
finer tuning is needed if maximum performance gains are desired.
Perhaps profiling with appropriate tools can provide additional
guidance in such searches.

6.3 RTM Transaction Retries
Similar to our findings for the array access microbenchmark, tuning
the number of retries for the RTM hardware transactions can pro-
vide significant performance improvements for Moldyn. As shown
in Figures 9 and 10, a sharp ”jump” exists in performance im-
provements as the number of transaction retries increases. The re-
sults however, indicate that finding out where this ”jump” likely de-
pends on application characteristics. Rather than a fixed optimum
retry limit number like suggested by Yoo et. al. [21], one might
obtain better results by further tuning.

This application-specific parameter may be utilized in on-line
profiling tools. At the time of writing, experiments are still ongoing
to further examine the impact of retry count on specific Moldyn
stages.

6.4 Fallback Lock Granularity
The software fallback path is an important part of our TSX inves-
tigation as described in Section 2.3; however, it may represent an-
other potential source of performance degradation, depending on
the locking scheme employed.

As we have explained, Moldyn critical sections are long and
computationally intensive. This makes it all the more likely that, if
we use a single global lock for all fallback paths, unrelated critical
sections will abort each other unnecessarily. We can reduce lock
contention by replacing the global fallback lock with multiple fine-
grained locks, but this is non-trivial, as we must ensure atomicity of
reads and writes to shared variables in various parts of the critical
section. Furthermore, as we pointed out earlier, these additional
data structures used for locking will put extra pressure on the

already-strained cache resources, and can become another cause
of aborts.

Another option is to assign locks to a particular group of shared
data, but this will come at the expense of significant programming
effort and finesse.

At the time of writing, we have conducted limited experiments
in reducing the granularity of fallback locks and have not observed
any significant performance improvements. While it is possible that
fine-grained fallback locks may provide additional benefits in cer-
tain scenarios, programming effort needed in identifying the spe-
cific locks needed for different transactional sections may com-
promise programmability. We see using a global fallback but with
split transactions into related logical segments to be a promising
approach given the opportunity of automation.

7. Related Work
Transactional Memory (TM) has been the subject of extensive
studies in the last decade or so [8–10, 16, 18], but traditionally the
focus has been been either on entirely software approaches, or on
hybrid implementations with the hardware part being simulated [7,
20]. As actual hardware transactional support has become available
only recently from Intel [12] and IBM [11], new work has been
looking at how to successfully couple the existing hardware support
with software approaches.

Wang et. al. [19] also investigated IBM’s support for hardware
TM; they look at how the STAMP benchmark suite [5] performs on
the BlueGene/Q, and classified several categories of applications in
terms of their suitability to use both TM in general, and the BG/Q
flavour of hardware TM more specifically.

Probably the closest-related work to ours is the very recent study
by Yoo et. al. [21], where the authors look at the performance of In-
tel’s Transactional Synchronization Extensions (Intel TSX) on sev-
eral benchmark suites, and also investigate some preliminary opti-
mization techniques to improve the compatibility of code with In-
tel’s TSX support. While their work certainly outdistances ours in
breadth through the sheer number of applications investigated, we
argue that our own study complements their work, by going into
more depth regarding certain performance aspects. For example,
we had the freedom to do an exhaustive investigation of the effect of
several parameters on application performance with our array mi-
crobenchmark (whereas such flexibility is not available while eval-
uating standardized benchmark suites). Furthermore, where Yoo et.
al. give little insight into the importance of retries, we show the sig-
nificant impact that choosing the right number of retries has. An-
other insight that our work provides is that, perhaps unintuitively,
the number (or ratio) of aborts is not necessarily directly correlated
with the best execution time; however, we acknowledge that it is
possible this behaviour does not occur on specific classes of appli-
cations or transactional code.

8. Future Work
8.1 Automatic Optimizations with Hybrid libTM
While many of the optimizations described in this study are man-
ually applied, with the already existing libTM API, our goal is to
design and implement support for some of our optimizations in a
generic way, that is applicable in a wide variety of cases. Specifi-
cally, we see opportunities to apply the techniques used in this study
towards an automated hybrid TM system. libTM currently sup-
ports overloading operators of transactionally accessed variables
in its underlying STM system. We plan to further extend this in-
terface along with per thread private buffers to reduce the length
of critical regions. This form of automatic privatization also logi-
cally split and reduce transaction sizes, thus allowing further possi-
ble improvements. We plan to use such ideas and use RTM to per-

form only tightly packed shared accesses. By nesting RTM transac-
tions to perform read validations and write flushes inside the STM
commit stage can potentially achieve similar performance improve-
ments we see in our current results. Finally, transaction retry is an
addition parameters that can be a subject of a more comprehensive
study and potentially create opportunities for dynamically optimiz-
ing its usage.

8.2 Cross-Phase Parallelization Optimizations
We are currently investigating an additional code transformation
optimization to further improve parallelism in barrier-based pro-
grams, such as, Moldyn. We note that barriers, as a synchroniza-
tion mechanism, can be overly restrictive and unnecessarily de-
lay threads from execution, even in cases where threads could ac-
tually proceed with their computation without waiting for slower
threads. Towards optimizing parallelism while respecting ordering
constraints, we plan to modify our existing libTM framework to
include awareness and enforcing of transaction ordering, through
user-provided transaction identifiers, and committing transactions
in identifier order. This would create opportunities for barrier re-
moval hence additional parallelism in the application.

9. Conclusions
In this study, we explore the trends and trade-offs in performance
and programmability for hardware transactional memory, particu-
larly Intel Transactional Synchronization Extensions. We systemat-
ically investigate the solution space of software TM, hardware TM
using Intel TSX, regular and optimized Pthread locking versions,
for a balanced solution between programmability and performance.

Using an array micro-benchmark, we derive performance mod-
els for a range of application patterns and parameter settings. We
further explore code transformations and optimizations for improv-
ing performance, including computation privatization, transaction
splitting or other size reduction.

We show that, with our code transformations and optimizations,
guided by our parameterized models for TSX, a speedup of up
to 2.76x is achieved versus the baseline sequential version. Our
optimized TSX version of Moldyn involved lower programming
effort while at the same time outperforming (by approximately
10%) the best hand optimized fine grain Pthread version. We thus
show that high performance is achievable with a programming
interface that is the familiar STM interface, without the need to
use complicated fine-grained locking.

We are planning to explore techniques for leveraging our perfor-
mance models, parameter tuning trends, and code transformations
by both on-line and off-line profilers or automated code optimiza-
tion tools.

In the long run, we envision a natural progression in TM re-
search leading to some form of hybrid TM system where the per-
formance advantages of HTM would be married to the programma-
bility and flexibility of STM. This combination would greatly help
programmers towards achieving the ultimate desirable for the pro-
gramming experience: correctness, simplicity, and performance.

References
[1] Intel TSX enabling and optimization recommendations. https://www-

ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-optimization-manual.pdf.

[2] Versatile Place and Route. http://www.eecg.toronto.edu/vpr.
[3] S. Birk, J. Steffan, and J. Anderson. Parallelizing FPGA placement

using Transactional Memory. In Field-Programmable Technology
(FPT), 2010 International Conference on, pages 61–69, 2010. .

[4] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus. Charmm: A program for macromolecular

energy, minimization, and dynamics calculations. Journal of Compu-
tational Chemistry, 4(2):187–217, 1983. ISSN 1096-987X. . URL
http://dx.doi.org/10.1002/jcc.540040211.

[5] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC
’08: Proceedings of The IEEE International Symposium on Workload
Characterization, September 2008.

[6] H. Chafi, J. Casper, B. Carlstrom, A. McDonald, C. Minh, W. Baek,
C. Kozyrakis, and K. Olukotun. A scalable, non-blocking approach to
transactional memory. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on, pages 97–
108, 2007. .

[7] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XII, pages 336–346,
New York, NY, USA, 2006. ACM. ISBN 1-59593-451-0. . URL
http://doi.acm.org/10.1145/1168857.1168900.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In DISC,
2006.

[9] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching Transac-
tional Memory. SIGPLAN Not., 44:155–165, 2009. ISSN 0362-1340.
URL http://doi.acm.org/10.1145/1543135.1542494.

[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning of
Word-based Software Transactional Memory. In PPoPP, 2008.

[11] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sug-
avanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski,
A. Gara, G.-T. Chiu, P. Boyle, N. Chist, and C. Kim. The ibm blue
gene/q compute chip. Micro, IEEE, 32(2):48–60, 2012. ISSN 0272-
1732. .

[12] Intel Corporation. Intel Architecture Instruc-
tion Set Extensions Programming Reference.
http://software.intel.com/sites/default/files/69/60/41604.

[13] D. Kanter. Analysis of Haswell’s Transactional Memory.
http://www.realworldtech.com/haswell-tm/1/.

[14] D. Lupei. A Study of Conflict Detection in Software
Transactional Memory. In Master thesis, 2009. URL
https://tspace.library.utoronto.ca/bitstream/1807/
18804/3/Lupei_Daniel_200911_MASc_thesis.pdf.

[15] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, and
C. Amza. Transactional Memory Support for Scalable and Transparent
Parallelization of Multiplayer Games. In EuroSys, 2010.

[16] A. McDonald, J. Chung, H. Chafi, C. C. Minh, B. D. Carlstrom,
L. Hammond, C. Kozyrakis, and K. Olukotun. Characterization of
TCC on Chip-Multiprocessors. In Proceedings of the 14th Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’05, pages 63–74, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2429-X. . URL http://dx.doi.
org/10.1109/PACT.2005.11.

[17] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
B. Aditya, and E. Witchel. Txlinux: using and managing hardware
transactional memory in an operating system. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems princi-
ples, SOSP ’07, pages 87–102, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-591-5. . URL http://doi.acm.org/10.1145/
1294261.1294271.

[18] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: Scalable
Transactions with a Single Atomic Instruction. In SPAA, 2008.

[19] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael. Evaluation of blue gene/q hardware sup-
port for transactional memories. In Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’12, pages 127–136, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1182-3. . URL http://doi.acm.org/10.1145/
2370816.2370836.

[20] L. Yen, J. Bobba, M. Marty, K. Moore, H. Volos, M. Hill, M. Swift,
and D. Wood. Logtm-se: Decoupling hardware transactional memory

from caches. In High Performance Computer Architecture, 2007.
HPCA 2007. IEEE 13th International Symposium on, pages 261–272,
2007. .

[21] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evalu-
ation of intel® transactional synchronization extensions for high-
performance computing. In Proceedings of SC13: International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 19:1–19:11, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2378-9. . URL http://doi.acm.org/
10.1145/2503210.2503232.

