
Transaction-Friendly Condition Variables ∗

Chao Wang, Yujie Liu, and Michael Spear
Lehigh University

{chw412, yul510, spear}@cse.lehigh.edu

Abstract
Recent microprocessors and compilers have added support for
transactional memory (TM). While state-of-the-art TM systems
allow the replacement of lock-based critical sections with scalable,
optimistic transactions, there is not yet an acceptable mechanism
for supporting the use of condition variables in transactional pro-
grams.

We introduce a new implementation of condition variables,
which uses transactions internally, and which can be used from
within transactions. Our implementation is compatible with exist-
ing C/C++ interfaces for condition synchronization. By moving
most of the mechanism for condition synchronization into user-
space, our condition variables have low overhead and permit flexi-
ble interfaces that can avoid some of the pitfalls of pthread condi-
tion variables. Performance evaluation on an unmodified PARSEC
benchmark suite shows superior performance for lock-based code.
In addition, our transactional condition variables make it possible
to replace all locks in PARSEC with transactions.

1. Introduction
The current Draft C++ Transactional Memory Specification [1]
makes it relatively easy to replace lock-based critical sections with
transactions: one need only replace lock-based regions of code
with lexically scoped transactions. One of the most significant
obstacles that remains is condition synchronization. Both Vyas et
al. [22] and Skyrme and Rodriguez [18] observed this problem
in the course of their efforts to transactionalize memcached and
luaproc, respectively.

In C++, a condition variable must be associated with a named
mutex. A thread must hold the mutex when waiting on the condition
variable, and the act of waiting effectively completes one critical
section. The thread can then be put to sleep and another thread may
safely acquire the lock and modify shared state. If its modifications
satisfy the condition, it signals the condition variable. The waiting
thread can then be woken, at which point it acquires the mutex and
executes the continuation of its critical section.

In existing concurrent programs, the act of breaking atomicity at
the point of a thread wait does not compromise correctness: the pro-
grammer is responsible for checking and restoring invariants when
the thread resumes execution. Thus a straightforward translation of
the synchronizing critical section to a pair of transactions is not,
itself, a concern. The problem is that a waiting thread must release
the lock and put itself to sleep in a single atomic operation; if the
sleep is delayed until after the lock is released, then it is possible
for an intervening signal operation to “miss” the waiting thread.

Traditionally, this problem is solved by implementing the lock-
ing and waiting mechanisms within the operating system. In this
manner, the operating system is able to mark the thread as waiting,

∗ This work was supported in part by the National Science Foundation under
grants CNS-1016828, CCF-1218530, and CAREER-1253362.

release the lock, and schedule another thread in a manner that ap-
pears atomic with respect to all other threads. A common practice
in this case is to relax the guarantees made by the operating system:
in Mesa, a signal could accidentally wake more than one thread [4],
and in the POSIX specification, a wait operation can return with-
out being paired with a signal. It should be noted that modern code
accepts these relaxations, and employs a few simple patterns (i.e.,
waiting within a while loop) to overcome any potential spurious
wake-ups.

In this paper, we present a novel implementation of condition
variables that is compatible with both locks and transactional mem-
ory. Our work is inspired by prior work by Dudnik and Swift [6],
which discusses an extension to the Solaris OS that supports condi-
tion variables within a research hardware TM prototype, and Atom-
Caml [16], which was the first to consider splitting wait opera-
tions within transactions. The key innovation in our work is that
each condition variable is implemented as a transactional queue of
per-thread counting semaphores. This design avoids several pitfalls
identified by Birrell [3], and makes it possible to implement con-
dition variables portably, without OS modification. The result is
simpler and more flexible than traditional condition variables, does
not have a noticeable impact on performance, and is agnostic to
the TM implementation (i.e., it is compatible with both hardware
and software transactions). Furthermore, our implementation is not
prone to certain spurious wake-ups that can occur with condition
variables implemented within the OS.

The remainder of this paper is organized as follows. Section 2
presents our condition variable algorithm. Section 3 discusses our
implementation in C++. In Section 4, we evaluate our algorithm
using both lock-based and transactionalized versions of the PAR-
SEC [2] benchmark suite. In Section 5, we review related work,
with a focus on programming models. Section 6 discusses future
work and concludes.

2. A Condition Variable Algorithm
Unlike linearizable concurrent data structures, a condition variable
does not naively admit a sequential specification: an invocation of
the wait method cannot produce a response without it paring with
an intervening operation (a signal) by another thread. Nonetheless,
we require a specification of the behavior of condition variables
before we can describe an algorithm that can be proven correct. To
that end, we begin by presenting an abstract specification modeled
after that proposed by Birrell et al. [4], and the sequential specifica-
tion of a lower-level CondVar object. Using this specification, we
introduce a generic algorithm and prove that it is both correct and
immune to spurious wake-ups. We then discuss synchronization re-
quirements.

2.1 Conventional Specification
In order for a condition variable to be useful, a programmer must be
able to reason about the order in which WAIT and NOTIFY opera-

1 2014/2/14



Algorithm 1: The CondVar Specification
shared states
Q : Set<Thread> // waiting threads; initially ∅

// p refers to the thread that performs the operation

procedure WAITSTEP1()
1 Q← Q ∪ {p}

function WAITSTEP2() : Boolean
2 return p ∈ Q

procedure NOTIFYONE()
3 if ∃ x ∈ Q then Q← Q \ {x}

procedure NOTIFYALL()
4 Q← ∅

tions are performed. Traditionally, this is accomplished by coupling
the use of condition variables with mutual exclusion locks.

Birrell et al. [4] proposed a semantics that is widely adopted by
many implementations of condition variables. In Birrell’s specifi-
cation, the abstract states of a condition variable object consist of
a set Q of waiting threads (initially empty) and a mutual exclusion
lock L. The object supports three operations specified as follows:
• A WAIT operation must be invoked within a critical section

where L is held by the invoking thread p. The operation consists
of two separate atomic steps: the first step adds p to Q and re-
leases L atomically; in the second step, the thread is suspended
until reaching a state where p /∈ Q and L is not acquired, at
which point it acquires L and returns.
• A NOTIFY operation atomically removes some non-empty

proper subset of threads from Q if Q is not empty.
• A NOTIFYALL operation atomically makes Q empty.

2.2 A Common Specification
Our aim is to produce a common specification of condition vari-
ables that is compatible with both locks and transactions. To this
end, we need to eliminate the notion of locks from the specification.
We also notice that in Birrell’s specification, NOTIFY can be sim-
ply implemented as a NOTIFYALL, and thus, we remove the former
operation from the interface, and replace it with a NOTIFYONE op-
eration to allow removing exactly one thread from the set of waiting
threads.

We introduce atomic sequences as the foundation of our com-
mon specification. An atomic sequence 〈S〉 is a dynamic sequence
of instructions S executed by some thread p, which are enclosed
by special beginning and ending instructions. The sequence of in-
structions S in 〈S〉 is executed atomically if there is no occurrence
of a WAIT operation in S. Atomic sequences are flat-nested, that is,
a nested atomic sequence 〈S0 ; 〈S1〉 ; S2〉 is semantically equiva-
lent to 〈S0 ; S1 ; S2〉.

A WAIT operation can appear only in an atomic sequence. An
atomic sequence 〈S; WAIT;C〉, where S is the preceding sequence
before the first occurrence of WAIT and C is the continuation
sequence after the WAIT operation, is semantically equivalent to
the following sequence:

〈S ; Q← Q∪{p}〉 ; 〈assert p /∈ Q〉 ; 〈C〉

A NOTIFYONE or NOTIFYALL operation can appear either
in an atomic sequence or not. In either cases, a NOTIFYONE is
equivalent to 〈if ∃x ∈ Q then Q← Q\{x}〉, and a NOTIFYALL
is equivalent to 〈Q← ∅〉.

Algorithm 2: A Generic CondVar Implementation
shared states
Q : Set<Thread> // waiting threads; initially ∅
spinp : Boolean // per-thread flag; initially false

procedure WAITSTEP1()
1 spinp ← true
2 Q← Q ∪ {p}

function WAITSTEP2() : Boolean
3 while true do if ¬spinp then return false

procedure NOTIFYONE()
// remove from Q an arbitrary element x if exists

4 if ∃ x ∈ Q then {Q← Q \ {x}; e← true} else e← false
// clear spinx if some x is removed from Q by last step

5 if e then spinx ← false

procedure NOTIFYALL()
// move all elements from Q to Q′

6 〈Q′ ← Q ; Q← ∅〉
// remove some x from Q′ and clear spinx

7 while ∃x ∈ Q′ do {Q′ ← Q′ \ {x}; spinx ← false}

The interface of a CondVar object consists of four operations
listed in Algorithm 1: WAITSTEP1, WAITSTEP2, NOTIFYONE,
and NOTIFYALL. Intuitively, a WAIT operation (Step1 and Step2)
adds the thread to the waiting set and suspends a thread. A
NOTIFYONE wakes a thread that has performed WAITSTEP1 on
the same CondVar but has not yet been woken, and NOTIFYALL
wakes all threads that have performed a WAITSTEP1 on a CondVar
but have not yet been woken.

We define the set of legal histories by imposing constraints on
the set of all sequential histories permitted by the CondVar object
in Algorithm 1.

Definition 1. A sequential history of a CondVar object is legal if it
satisfies the following:
(1) For every thread, a WAITSTEP1 operation is immediately

followed by a WAITSTEP2 in the thread’s history.
(2) Every WAITSTEP2 operation returns false.

2.3 A Generic Implementation
Let us now consider an implementation of condition variables that
satisfies this specification. We represent each condition variable as
a set of thread identifiers, and additionally require per-thread flags.
The set stores the identities of all threads waiting on a particular
CondVar; the flag is a convenience mechanism that provides a
means for decoupling set operations from the instructions that
allow a waiting thread to continue.

In this algorithm, a thread performs WAITSTEP1 by setting
its flag and then inserting its unique identifier into a particular
CondVar’s set. To wake a thread, should there be one waiting, a
thread uses NOTIFYONE to remove one entry from the set, and
then clears the corresponding thread’s flag. NOTIFYALL is similar
to NOTIFYONE, except it wakes all threads that are sleeping on the
CondVar.

We now prove a few properties of this generic implementation.
For the proofs, we assume that each line in the code listing is
executed as an atomic step. Note that for the while-loops at lines 3
and 7, “executing as an atomic step” means executing one iteration
of the loop as an atomic step, including the evaluation of the
condition and at most one execution of the loop body. We use the

2 2014/2/14



Algorithm 3: Data Types and Variables
QUEUENODE DATA STRUCTURE
sem : sem t // reference to a semaphore
next : QueueNode // next entry in queue

PER-THREAD VARIABLES
my node : QueueNode // reference to a queue node

CONDVAR DATA STRUCTURE
head : QueueNode // reference to head of queue
tail : QueueNode // reference to tail of queue

notation p@k to denote that thread p is about to execute the step at
line k.

The main obligation of the proof is to show that there exists a re-
finement mapping from the generic implementation to the CondVar
specification. The following invariants capture the basic properties
of the algorithm, which can be proved together (as one conjunction)
by induction over reachable states.

Lemma 2. The following statements hold as invariants:
(1) p@1 =⇒ ¬spinp

(2) p@2 =⇒ spinp

(3) p ∈ Q =⇒ p@3∧ spinp

(4) p@5∧ e =⇒ x@3∧ spinx

(5) p@7∧x ∈ Q′ =⇒ x@3∧ spinx

Theorem 3. The generic CondVar implementation is linearizable.

Proof. We define the linearization point of each operation as fol-
lows:
• A WAITSTEP1 linearizes at line 2.
• A WAITSTEP1 linearizes at line 3 where it reads spinp is false.
• A NOTIFYONE linearizes at line 4.
• A NOTIFYALL linearizes at line 6.

3. Design and Implementation
We now present a complete implementation of condition variables
that is compatible with both locks and transactions. The implemen-
tation satisfies the specification from Algorithm 2. We begin by dis-
cussing an abstract approach, and then we describe implementation
alternatives.

3.1 Data Structures
A practical implementation of condition variables must ensure that
threads yield the CPU when they are waiting on the processor,
and that there are not arbitrary delays between when a thread is
signaled and when it resumes execution. Typically, this is achieved
by implementing condition variables as Operating System objects.
In contrast we represent each condition variable as a queue in
user-space, and implement the per-thread spinp flags as binary
semaphores. The queue stores references to individual threads’
semaphores. By initializing the semaphores to 0, we can remove
line 1 from Algorithm 2 and implement line 3 as as semp.wait().
The instances of spinx ← false on lines 5 and 7 can each be
replaced with as semx.signal(). Algorithm 3 presents the data
structures required to achieve this implementation.

3.2 Algorithm Description
In the interest of generality, we assume a continuation-passing style
of execution. The call to WAIT thus takes two parameters: an ab-
stract description of the synchronization context, and the continu-
ation to execute after the thread resumes execution. As we discuss
later in this section, our implementation can be adapted to other

styles with little effort. Algorithm 4 presents an implementation of
WAIT using this interface, and Algorithm 5 presents NOTIFYONE.

Algorithm 4: The Wait algorithm, using continuation passing

procedure WAIT(Sync, Cont)
1 my node.next← nil

// Insert thread’s semaphore into CondVar’s queue
2 BEGINTRANSACTION ()
3 if tail = nil and head = nil then
4 head← tail← my node

5 else
6 tail.next← my node

7 tail← my node

8 ENDTRANSACTION ()
// Break atomicity by completing enclosing synchronized block

9 Sync.End()

// Wait for a signal
10 my node.sem.wait()

// Invariant: my node no longer in queue
// Execute continuation using same synchronization mechanism

11 Sync.Begin()
12 Cont.execute()

13 Sync.End()

Algorithm 5: The NotifyOne algorithm

procedure NOTIFYONE()
1 BEGINTRANSACTION ()

// If queue not empty, dequeue head element
2 sn← head
3 if sn = nil then
4 return
5 if head = tail then
6 head← tail← nil

else
7 head← head.next

// Wake the thread when we exit from outer transactional scope
8 REGISTERHANDLER (sn.sem.signal())
9 ENDTRANSACTION ()

We expect the WAIT algorithm to be called from an active
synchronization context. That is, Sync should refer to a mutual
exclusion lock that is held by the caller, or a transaction that is
being executed by the caller. (We defer discussion of nested critical
sections until Section 3.4). The thread uses a transaction to enqueue
its unique node into the CondVar’s queue. The use of transactions
provides generality and safety: since both WAIT and NOTIFYONE
use transactions to access the queue, both methods can be called
from any combination of lock-based code, transactional code, and
even unsynchronized code without risking data races on the queue.
Strictly speaking, if the CondVar methods are always called from
the same synchronization context (locks or transactions), this inner
transaction is not necessary.

Once the thread has enqueued its semaphore, it then completes
its caller’s synchronization block, by either releasing locks or com-
mitting the transaction. At this point, we know that descheduling
of the caller cannot lead to deadlock: it does not hold resources
that are required by another thread. Thus it is safe for the thread to
wait on its semaphore. Once the semaphore is signaled, the thread
will awake, and execute the continuation (Cont) in a synchronized

3 2014/2/14



manner, in keeping with the synchronization description present
in Sync. In comparison with Algorithm 2, we see that the only
changes are (a) introducing a synchronization context, and (b) re-
placing spin-waiting on per-thread flags with the use of per-thread
semaphores. Note, too, that by explicitly ending one synchroniza-
tion context and then instantiating another, we can be sure that there
is no active hardware or software transaction at the time of the
call to sem.wait(). Without this guarantee, hardware transactions
would abort, due to the system call.

The behavior of NOTIFYONE is simple: using a transaction, the
caller removes exactly one element from a nonempty queue, and
schedules a signal operation on that element’s semaphore. As with
WAIT, the use of a transaction ensures race freedom even in the
case of naked notifies (i.e., when NOTIFYONE is called from an
unsynchronized context). One subtletly is that we use an “onCom-
mit” handler to schedule the semaphore signal to occur when the
transaction commits. When NOTIFYONE is called while a lock is
held, or from an unsynchronized context, the signal will happen
immediately after line 9 completes. However, if NOTIFYONE is
called from a transaction, then a waiting thread will not be woken
until the caller’s outermost transaction commits. From the perspec-
tive of Mesa-style semantics, there is no harm in this approach; the
wake-up operation can delay. However, by delaying the operation,
we can be sure that (a) there is no wake-up caused by a transac-
tion that ultimately does not commit, and (b) there is no attempt to
call sem.signal() from an active hardware transactional context.
As with WAIT, such a call would cause the hardware transaction
to abort and restart in software mode. Note, too, that the current
GCC TM implementation maintains the necessary data structures
to allow a hardware transaction to store onCommit handlers and
run them after transaction commit.

3.3 Supporting NotifyAll
Adding NOTIFYALL support is relatively straightforward. We need
only dequeue all elements from the CondVar’s queue, and then
schedule each element’s semaphore to be signaled. An implemen-
tation appears in 6.

Algorithm 6: The NotifyAll algorithm

procedure NOTIFYONE()
1 BEGINTRANSACTION ()

// If queue not empty, dequeue all elements
2 sn← head

3 if sn = nil then
4 return
6 head← tail← nil

// Wake all threads when we exit from outer transactional scope
8 while sn 6= nil do
9 REGISTERHANDLER (sn.sem.signal())

10 sn← sn.next

11 ENDTRANSACTION ()

The principal burden of this algorithm is to ensure that accesses
to a queue node’s next pointer do not race with nontransactional
accesses on line 1 of WAIT. Note that there is a form of privatization
taking place: once a thread’s node is removed from the queue, there
should be no references to the node from any thread other than
the node’s owner; otherwise, the unsynchronized write on line 1 of
WAIT would not be correct.

In the case of NOTIFYALL, we have the guarantee that all
accesses to next fields are performed within a transaction. In order
for these elements to be accessible to the thread, the element owner
must have committed a transaction on line 8 of WAIT, and there

cannot have been an intervening NOTIFYONE or NOTIFYALL that
removed that thread’s node from the queue. Thus it is impossible
for the waiting thread to have reached line 11 of WAIT, and no race
is possible.

3.4 Specializing Wait for Different Synchronization Contexts
It should first be noted that the availability of a continuation pro-
vides a nice optimization: since the continuation represents the
code that must execute between when WAIT returns and when
the calling context’s synchronized region appears to complete, we
can elide lines 11–13 in the case where the continuation is empty
(i.e., where WAIT is the last instruction in a critical section). When
called from a lock-based critical section, this optimization prevents
a lock acquire and release pair, decreasing latency and reducing
contention on the lock.

On the other hand, when called from a lock-based critical sec-
tion, the use of a continuation can be avoided. Suppose there was
no continuation parameter, and that lines 12 and 13 were elided. In
this setting, the behavior of our CondVar, when called from a lock-
based critical section, would be indistinguishable from pthread or
C++11 condition variables: the caller would execute the continua-
tion upon returning from the call to WAIT, and would do so using
the same synchronization mechanism (the same lock) as was in use
at the time of the call to WAIT.

This situation can be generalized to a nested monitor environ-
ment, in which several locks are held. If Sync stores references to
all locks held at the time of the call to WAIT, then all locks can
be released (in any order) on line 9, and then can be re-acquired
(presumably in order from outermost to innermost [24]) on line 11.
As with the single-lock setting, the use of a continuation is not re-
quired.

When called from a transactional context, our implementation
may require changes to the TM run-time system if a continua-
tion style is not used. In pure-hardware transactions, where the
hardware is responsible for thread checkpointing [10, 11], trans-
actions need not be lexically scoped, and thus it is possible to im-
plement our mechanism, without continuations, by simply invoking
the hardware primitives to end and begin transactions. Note that in
the case of flat nesting, WAIT must record the nesting depth on
line 9, and then create an appropriate transaction nest on line 11.
Failure to do so will result in the innermost transaction of the loop
nest committing its state, and the remaining transactional scopes of
the continuation executing nontransactionally.

For software transactions, it is relatively straightforward to al-
low a transaction to commit early (line 9). However, it is not as easy
to open a new transactional context on line 11, return to the caller,
and then execute the continuation. For relaxed software transac-
tions, and for atomic software transactions that do not call cancel
in the continuation, it is possible to run the continuation irrevo-
cably [20, 23], in which case checkpointing is not necessary, and
rollback is not possible. As with hardware transactions, the nesting
depth will need to be preserved. However, for long-running con-
tinuations, such an approach could greatly impede scalability. An
alternative is to perform aggressive stack checkpointing as part of
line 11, so that the underlying TM can support transactions that are
not lexically scoped. We do not advocate this as an interface avail-
able to the programmer, only as an option available to the run-time
system for the sake of supporting efficient condition synchroniza-
tion.

For completeness, we note that another option is to require the
continuation to be empty. In this case, WAIT lines 9 and 11-13 are
elided, and line 10 is deferred via REGISTERHANDLER. For trans-
actions in which the WAIT operation is in a shallow scope relative
to the transaction boundaries, the code rewriting that is required
for non-empty continuations should be minimal. Furthermore, the

4 2014/2/14



runtime can easily provide dynamic checking: after line 10, a flag
can be set, which is cleared on transaction commit. Transactional
loads and stores would then check the flag before accessing shared
memory, and throw an exception if the flag is set. In this manner,
the runtime can prohibit memory accesses between the WAIT and
the commit of the (rewritten) enclosing transaction.

3.5 Implementation Properties
Our implementation provides the following properties and guaran-
tees to programmers:

Yielding The history of monitors extends back to a time when
uniprocessors were prevalent. Even with multicore CPUs, multi-
programming and oversubscription of threads necessitate support
for descheduling a waiting thread, and running another thread on
the same CPU. Any practical implementation of condition variables
must ensure that upon reaching line 3, the calling thread is put to
sleep, and also that the delay between when notify is called, and
when the corresponding thread awakes, is minimal. Clearly, our
generic algorithm fails in this regard, as it uses a busy wait loop.
Even replacing the busy wait with a call to sched yield would not
suffice, as it would not guarantee quick wake-up after a notification.
However, our use of semaphores addresses this requirement.

Deterministic Wake-Up Semantics In Hoare’s work [9], the
set associated with a condition variable is explicitly stated to be
a queue. Furthermore, a NOTIFYONE operation (there was no
NOTIFYALL) was required to be performed while holding a lock,
and immediately transferred the lock to the thread at the head of the
queue. Mesa, on the other hand, delayed signals until the notifier
reached the end of the critical section. This delay, and the absence
of an explicit hand-off of the lock, allowed for higher performance
at the cost of weaker semantics: when thread a signaled thread b,
there was no mechanism to prevent some other thread c from en-
tering the monitor after a completed but before b resumed. This
property is shared by our implementation: When a NOTIFYONE
pairs with a WAIT operation, there is no bound on the delay be-
tween lines 10 and 11.

On the other hand, the use of a generic set, rather than a queue,
matches the C++11 and pthread specifications. Thus it is possible
that NOTIFYONE may wake any waiting thread, without regard for
which thread began waiting first. Scherer and Scott argued that both
stack (LIFO) and queue (FIFO) semantics are sometimes advanta-
geous [17], particularly with respect to caching. Our relaxed (i.e.,
Mesa) semantics for condition variables, coupled with the user-
space implementation described in Section 3, allow for arbitrary
thread selection policies, with FIFO as the default. Indeed, since
the set is in user-space, it is possible to provide a NOTIFYBEST op-
eration, which traverses the set and selects the best thread to wake
(possibly using priority, or an additional parameter provided to the
WAIT operation to describe the predicate upon which each thread
is waiting).

Spurious Wake-Ups Our specification does not allow spurious
wake-ups. That is, a call to WAIT cannot return unless it matches
with exactly one notifying operation. In our design, the act of
putting a thread to sleep need not be atomic with the linearization
of its upper half. That being the case, we do not require custom OS
support.

In contrast, both the C++11 and pthread specifications allow
for a call to WAIT to return even in the absence of a subsequent
NOTIFYONE or NOTIFYALL. This relaxation of the specification
appears to be a consequence of how operating systems implement
condition variables, and in particular how they respond to interrupts
that arrive while a call to wait is in the midst of transitioning
between user-space and kernel execution. In these systems, it must
be assumed that any call to WAIT may simply return, without

a matching signal. Thus even in programs whose logic prevents
oblivious wake-ups, WAIT should be called from a loop in order
to detect spurious wake-ups. In contrast, our specification does not
allow such spurious returns from the WAIT method.

Oblivious Wake-Ups The addition of NOTIFYALL to monitors
arose from a common usage pattern in which several threads wait
on different predicates. Since traditional condition variables main-
tain the set of waiting threads in the operating system, it is not pos-
sible for NOTIFYONE to know which thread to wake (or even if any
thread is sleeping). Consequently, a NOTIFYONE might wake the
“wrong” thread, which then must call NOTIFYONE before putting
itself back to sleep. The solution, NOTIFYALL, wakes all threads
sleeping on a condition variable. When more than one thread is
sleeping, we refer to these as “oblivious” wake-ups, since they
wake up all of a CondVar’s waiting threads, regardless of wether
the predicates upon which they depend have been satisfied.

Since the possibility of spurious wake-ups already necessitates
that all threads double-check program data upon return from WAIT,
allowing oblivious wakeups imposes no burden on the programmer
in the general case. Given the absence of spurious wake-ups, our
implementation only requires double-checking after a WAIT for
specific (general) patterns. In particular, single-producer/single-
consumer patterns, which do not cause oblivious wake-ups, are
simpler to implement given our stronger specification.

4. Evaluation
In this section, we evaluate the performance of our implementation
of transaction-safe condition variables. We seek to answer two
main questions, one quantitative and the other qualitative:
• What is the overhead of these condition variables, versus

pthread condition variables, in lock-based code?
• What anomalies arise when using these condition variables

from transactions?

4.1 Experimental Platforms
We performed experiments using two machines. “Westmere” ex-
periments were performed on a 6-core/12-thread Intel Xeon X5650
CPU running at 2.67GHz; “Haswell” experiments used a 4-core/8-
thread Intel Core i7-4770 CPU running at 3.40GHz. Both ma-
chines were running Ubuntu 13.04 with kernel version 3.8.0. All
benchmarks were compiled using an experimental version of GCC,
version 4.9.0. The compiler was configured to use its ml wt soft-
ware TM algorithm on Westmere, and to use its HTM algorithm
on Haswell. All code was compiled at -O3 optimization level, and
experiments are the average of five trials. Variance was uniformly
low.

4.2 Benchmarks
We evaluated the performance of our condition variable library
using eight benchmarks: facesim, ferret, fluidanimate, streamclus-
ter, bodytrack, x264, raytrace and dedup. These benchmarks are
from the PARSEC benchmark suite [2]. Of the 16 benchmarks in
PARSEC, three are “network” versions of other benchmarks within
PARSEC, and five benchmarks (blackscholes, freqmine, swaptions,
vips and canneal) do not use condition variables. We evaluate the
remaining eight benchmarks. These benchmarks are representative
of the general conditional synchronization patterns that are used
widely in current shared-memory multi-threaded programs. We de-
scribe these benchmarks and their parallelization and condition
synchronization patterns as below.
• facesim computes the animation of an input modeled face by

simulating its underlying physics. It uses condition variables
to implement implements a dynamic and load-balanced task
queue that can be employed by a group of working threads. The

5 2014/2/14



main program adds tasks to each task queue and waits for the
completion of these tasks by the working threads.
• ferret is a benchmark for content-based similarity search. To

process input data (i.e., images), ferret uses a pipeline that
contains 6 stages, each stage containing a thread pool and a
job queue. From the perspective of condition synchronization,
this benchmark represents a pipelined multi-producer, multi-
consumer problem.
• fluidanimate simulates incompressible fluid for interactive an-

imation. Condition synchronization is only used to implement
a barrier, in place of pthread barrier.
• streamcluster solves an online clustering problem. Similar to

fluidanimate, streamcluster uses condition variables to imple-
ment a barrier. It also employs condition variables to allow a
master thread to distribute work in a master/slaves pattern.
• bodytrack is a computer vision application that can track the 3-

D pose of a human body through a series of images. Condition
variables are used to implement three synchronization facilities:
a barrier, a multi-threaded synchronization queue, and a persis-
tent thread pool.
• x264 is an H.264/AVC video encoder. Like ferret, x264

also represents a pipeline model. However, x264 has as many
pipeline stages as input frames. Each thread encodes one frame
at a time and all threads work in parallel. The use of condition
variables in x264 is to coordinate threads in the encoding
process and the threads waiting for reference frames.
• raytrace is a renderer that generates animated 3D scenes. Mul-

tiple threads use a multi-threaded task queue, which employs
condition variables.
• dedup compresses data streams via a 5-stage pipeline, where

each stage employs a queue. Condition variables are used in two
settings: the per-stage queues, and a coordination mechanism
between worker threads and the (serial) output thread.
Of these benchmarks, fluidanimate, streamcluster

and bodytrack use condition variables in place of pthread bar-
riers. Strictly speaking, these uses are not necessary. We measure
the condition variable-based barrier nonetheless. All benchmarks
except facesim and fluidanimate can run with any num-
ber of threads. facesim can only run with a number of threads
designated by its input file, while fluidanimate can only run
with a power-of-2 number of threads. All benchmarks were tested
with their largest available inputs: for facesim, we use input
“sim dev”, for others, we use input “native”.

4.3 Software Systems Compared
We compare four alternatives. First, we use the baseline PARSEC
benchmarks as a baseline. This implementation uses pthread locks
to protect critical sections, and pthread condition variables for con-
dition synchronization. Second, we evaluate our implementation in
an ideal setting. In the ideal setting, all calls to WAIT, NOTIFYONE,
and NOTIFYALL are made from within lock-based critical sections.
In this case, our implementation does not require the use of trans-
actions to protect the internal queue; it is not a realistic implemen-
tation, but allows us to assess overheads. Third, we implemented a
general variant of condition variables. The general implementation
uses transactions internally to protect the condition variables’ inter-
nal queues, and thus is compatible with code that calls CondVar
methods from lock-based, transactional, or unsynchronized con-
texts. By comparing the general, ideal, and baseline algorithms, we
can determine whether (a) our mechanism offers competitive per-
formance for lock-based code relative to the current state-of-the-
art, and (b) whether the use of transactions in the implementation
creates unacceptable overheads. Note that on the “Westmere” ma-
chine, the internal implementation uses software transactions, but
on “Haswell” the internal implementation employs hardware TM.

Benchmark Total Txns Txns that Wait Txns Refactored
facesim 9 2 0
ferret 3 2 2
fluidanimate 9 2(2*) 2(2*)
streamcluster 7 3(2*) 2(2*)
bodytrack 9 2(1*) 2(1*)
x264 4 1 0
raytrace 14 4(1*) 0
dedup 10 3 3
TOTAL 65 19(6*) 11(5*)

Table 1: Synchronization characteristics of PARSEC source code.
Numbers in parenthesis indicate calls to cond wait used in the
barrier implementation.

Our fourth comparison point, tm, replaces all locks in the eight
benchmarks with transactions, and uses our general implementa-
tion of condition variables. To ensure a consistent interface, we
opted not to use the continuation passing style, and instead to use
manual refactoring to split transactions at the point of a WAIT (see
Section 3.4). Table 1 shows that this effort was minimal.

4.4 Performance
Figures 1 and 2 show the performance of PARSEC benchmarks on
the Westmere and Haswell machines. Figure 3 presents the geo-
metric mean speedup of each software system, versus the baseline
(pthread) implementation of condition variables. We discuss key
results below.

Cost of Semaphores On both machines, the ideal and baseline
algorithms have very close performance. On Westmere, the ideal
algorithm delivers noticable speedups on facesim and bodytrack,
and otherwise performs identically to the pthread implementation
of condition variables. This indicates that our use of semaphores
alone does not impose a poerformance penalty versus an operating
system implementation of condition variables. We suspect that the
improvements on facesim and bodytrack are a consequence of
fewer system calls, since NOTIFYONE need not enter the operating
system if the user-space queue is empty. On Haswell, the effect is
more muted. Bodytrack again shows an improvement, particularly
at high thread counts, but this is offset by additional overhead on
raytrace. Taken as a whole, these measurements show that simply
using semaphores instead of OS condition variables does not create
a performance penalty.

Cost of Condition Variable Implementation The ideal algorithm
is not safe for general-purpose code, however, since it assumes that
it will be called from a synchronized context. By comparing the
ideal and general bars, we can assess the cost of synchronization.
Note that we exclusively use TM to synchronize accesses to condi-
tion variables’ internal data structures. Thus on Westmere, the dif-
ference between ideal and general can be attributed to software TM
overheads, and on Haswell, the difference is due to hardware TM
overheads. The transactions themselves are small, and should not
produce conflicts. On both platforms, the overhead is negligible.

Transactionalized PARSEC The tm bars represent the first time
that these PARSEC benchmarks have been transactionalized on a
real-world system, since no prior work has provided support for
condition variables. The benchmark performance roughly falls into
three categories. First, on streamcluster, ferret, and x264, perfor-
mance is roughly equivalent to baseline when all locks are replaced
with transactions. Second, in facesim, fluidanimate, bodytrack, and
raytrace, we see that performance shows the same tendencies as for
lock-based code, but with higher overhead. This should not be a

6 2014/2/14



 0
 1
 2
 3
 4
 5
 6
 7

1 2 3 4 6 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(a) facesim

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8 9 101112

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(b) ferret

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

1 2 4 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(c) fluidanimate

 50
 100
 150
 200
 250
 300
 350
 400
 450

1 2 3 4 5 6 7 8 9 101112

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(d) streamcluster

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 101112

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(e) bodytrack

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

1 2 3 4 5 6 7 8 9 101112

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(f) x264

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

1 2 3 4 5 6 7 8 9 101112

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(g) raytrace

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 101112

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(h) dedup

Figure 1: Westmere performance

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

1 2 3 4 6 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(a) facesim

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

1 2 3 4 5 6 7 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(b) ferret

 50

 100

 150

 200

 250

 300

 350

1 2 4 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(c) fluidanimate

 50
 100
 150
 200
 250
 300
 350
 400

1 2 3 4 5 6 7 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(d) streamcluster

 20
 40
 60
 80

 100
 120
 140
 160

1 2 3 4 5 6 7 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(e) bodytrack

 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

1 2 3 4 5 6 7 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(f) x264

 0
 100
 200
 300
 400
 500
 600
 700
 800

1 2 3 4 5 6 7 8

T
im

e
 i
n
 s

e
co

n
d

s

Threads

baseline
ideal

general
tm

(g) raytrace

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 2 3 4 5 6 7 8
T
im

e
 i
n
 s

e
co

n
d

s
Threads

baseline
ideal

general
tm

(h) dedup

Figure 2: Haswell performance

surprise: naive transactionalization should not be expected to out-
perform carefully-tuned lock-based code. We leave as future work
investigation into the sources of these overheads.

The final benchmark, dedup, exhibits virtually no scaling. In
dedup, there is a critical section that performs I/O within a relaxed
transaction. These relaxed transactions cannot run in parallel with
any other transactions, and thus during I/O, there is no concurrency.
While this situation has long been expected by the research com-
munity, dedup provides a concrete data point.

Summary Figure 3 summarizes these results: the ideal and the
general algorithm only impose negligible performance degradation
across all benchmarks, on both machines. The best case speedup,
on bodytrack, reaches 131.8% on the Westmere, and 110% on
Haswell. While there is clearly more work to be done before TM
performs as well as locks for PARSEC, the road ahead should be
much clearer now that it is possible to transactionalize these 8
benchmarks. Regarding the tm bars, we encourage the reader to
treat the results as qualitative: at long last, condition variables can
be supported when transactionalizing legacy code, and for many
condition synchronization patterns, such integration is seamless
and does not impair performance.

5. Related Work
Research into condition synchronization mechanisms for transac-
tions covers a wide spectrum. On one side, there are efforts, like
ours, to improve the implementation of condition variables and/or
provide transaction-safe condition variables. On the other side of
the spectrum are efforts to craft new alternative condition synchro-
nization mechanisms, which bear little resemblance to traditional
monitors and condition variables. While our work is the first to ex-
plore condition synchronization in a manner that is compatible with
both commodity hardware TM and the C++ TM specification, its
relationship with prior work is complex. We highlight salient foun-
dational and related work below.

Our work to replace condition variables with semaphores bears
a similarity to efforts undertaken by Birrell [3]. That work at-
tempted to create condition variables for a general-purpose oper-
ating system (Win32) using only semaphores. A key considera-
tion was whether it would be possible to implement each condi-
tion variable with a constant number of semaphores. Many corner
cases arose, which ultimately led to the creation of first-class con-
dition variables in later versions of Win32 operating systems. Bir-
rell’s work preceded widespread language-level support for thread-
local variables, and thus did not consider the alternative we pro-

7 2014/2/14



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

fa
ce

sim
fe

rre
t

flu
id

an
im

at
e

st
re

am
cl
us

te
r

bo
dy

tra
ck

x2
64

ra
yt

ra
ce

de
du

p

S
p

e
e
d

u
p

baseline
ideal

general
tm

(a) Westmere

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

fa
ce

sim
fe

rre
t

flu
id

an
im

at
e

st
re

am
cl
us

te
r

bo
dy

tra
ck

x2
64

ra
yt

ra
ce

de
du

p

S
p

e
e
d

u
p

baseline
ideal

general
tm

(b) Haswell

Figure 3: Geometric mean speedup versus baseline

pose, of using per-thread semaphores instead of per-condition vari-
able semaphores.

In another closely related project, Dudnik and Swift [6] ex-
plored the hardware and operating system mechanisms required to
make transactions compatible with the Solaris operating system’s
implementation of condition variables. Their work considered a ro-
bust hardware TM that had internal support for onCommit han-
dlers, and emphasized compatibility with a legacy implementation
of condition variables. As a result, the main considerations dealt
with supporting system calls from within a hardware transaction,
and making operating system mechanisms compatible with trans-
actional synchronization. In contrast, our work moves all but the
most bare-bones scheduler interaction into user-space, and does so
in a manner that is agnostic to the TM implementation and operat-
ing system. Our work thus generalizes and simplifies this earliest
effort at transaction-safe condition variables.

Smaragdakis et al. proposed punctuated transactions as a means
of handling I/O and condition synchronization [19]. A punctuat-
ing action commits one transaction; user code can then run non-
transactionally, after which the continuation executes in a transac-
tion. The continuation must contain programmer-supplied code to
verify or restore any invariants that were violated during the period
between the two “halves” of the transaction. This model has largely
been ignored by the TM community for its complexity; however,
the notion of restoring invariants upon resumption of a continua-
tion is precisely the model used for monitor-based synchronization.
Our implementation of WAIT can thus be thought of as a special-
ization of punctuated transactions, in which the only code between
the punctuated halves is a sem.wait(). It should be straightfor-
ward to generalize our implementation to support other forms of

punctuation, in a manner that is compatible with both hardware and
software transactions.

Efforts to synchronize transactions without splitting them into
separate atomic blocks can be separated into two categories:
conflict-based coordination, and group commit. In the former cate-
gory, Harris and Fraser [7], and later the X10 group [5], suggested
a Conditional Critical Regions style of synchronization. In this
model, the read-only prefix of a transaction determines if a pred-
icate holds, and if not, the transaction aborts and retries. When
the predicate holds, the continuation runs in the same context as
the predicate test, as a single atomic transaction. To optimize this
model, a transaction may make visible the locations it read to com-
pute the predicate, so that it can yield the CPU. The transaction
is woken by another thread, after that thread’s transaction changes
any of the locations upon which the sleeping thread’s predicate
depends. Harris et al. later extended this approach to a “retry” con-
struct [8], in which transactions can, at any time, determine that
a predicate does not hold. At such a point, the transaction may
“retry”, which rolls back the transaction’s effects, makes the trans-
action’s read set visible, and then yields the CPU until some other
transaction commits a write to a location that the sleeping trans-
action had tried to read. Spear et al. [21] later showed that it is
possible to manage retry-based read and write set tracking in a
manner that is orthogonal to the underlying TM implementation.
However, no existing hardware TM systems that can support this
mechanism: software instrumentation is currently required.

Lastly, Luchangco and Marathe [14] and Lesani and Pals-
berg [12] proposed mechanisms for synchronizing transactions via
group commit. In these models, which can be extended to more
closely resemble condition variables [15], an object mediates de-
pendencies between transactions, and certain interactions (such as
one transaction waiting and another signaling) create a requirement
for the transactions to commit or abort atomically with each other.
As with retry, this mechanism is not compatible with hardware
TM: since current hardware TM proposals implement one-phase
commit, they cannot ensure that two transactions commit or abort
together [13]. As a result, coordinating transactions must execute
in software on modern commodity hardware TM.

6. Conclusions and Future Work
This work introduces an implementation of the legacy interface for
condition variables that is compatible with transactions. We make
it possible, for the first time, to replace locks with transactions in
existing software, even when those locks are used for both mutual
exclusion and condition synchronization. In experiments on the
PARSEC benchmark suite, we showed that the overhead of our
mechanism relative to pthread condition variables is negligible, and
that the ability to make condition synchronization compatible with
transactions allows the discovery of performance anomalies when
transactionalizing highly-tuned lock-based code.

Despite this improvement to the state-of-the-art, there is much
work that remains, particularly with regard to programming mod-
els. In our work, we focus on lock-based code, and thus we do not
need to concern ourselves with the use of the “transaction cancel”
construct. Suppose, however, that following the return of a WAIT,
the continuation attempts to cancel itself. In this case, it is not clear
what should happen: should the outer scope be canceled, in which
case a NOTIFYONE might be lost? Should only the continuation be
canceled? Real-world uses of both cancellation and transactional
condition synchronization are needed before a preferred approach
can be known. Indeed, the best approach might be to use a mecha-
nism like retry instead. In that case, a significant challenge will be
to allow uninstrumented hardware transactions to run concurrently
with a retrying transaction, and to be able to call retry themselves.

8 2014/2/14



Despite these challenges, we are confident that our work will
enable more widespread use of transactions. In particular, our ef-
fort to make condition variables compatible with hardware TM and
the C++ specification ensures that programmers can transactional-
ize more legacy code, and write new transactional code that uses
familiar programming idioms.

Acknowledgments
We thank Victor Luchangco and Michael Scott for many helpful
suggestions during the conduct of this research.

References
[1] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich. Draft

Specification of Transactional Language Constructs for C++, Feb.
2012. Version 1.1, http://justingottschlich.com/
tm-specification-for-c-v-1-1/.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, Oct. 2008.

[3] A. Birrell. Implementing Condition Variables with Semaphores. In
Computer Systems, Monographs in Computer Science, pages 29–37.
Springer New York, 2004.

[4] A. Birrell, J. Guttag, J. Horning, and R. Levin. Synchronization Prim-
itives for a Multiprocessor: A Formal Specification. In Proceedings of
the 11th ACM Symposium on Operating Systems Principles, Austin,
TX, Nov. 1987.

[5] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von
Praun, V. Saraswat, and V. Sarkar. X10: An Object-Oriented Approach
to Non-Uniform Cluster Computing. In Proceedings of the 20th ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, San Diego, CA, Oct. 2005.

[6] P. Dudnik and M. M. Swift. Condition Variables and Transactional
Memory: Problem or Opportunity? In Proceedings of the 4th ACM
SIGPLAN Workshop on Transactional Computing, Raleigh, NC, Feb.
2009.

[7] T. Harris and K. Fraser. Language Support for Lightweight Transac-
tions. In Proceedings of the 18th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Oct. 2003.

[8] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
Memory Transactions. In Proceedings of the 10th ACM Symposium on
Principles and Practice of Parallel Programming, Chicago, IL, June
2005.

[9] C. A. R. Hoare. Monitors: An Operating System Structuring Concept.
Communications of the ACM, 17(10):549–557, 1974.

[10] Intel Architecture Instruction Set Extensions Programming Reference.
Intel Corp., 319433-012a edition, Feb. 2012.

[11] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Ar-
chitecture and Implementation for IBM System Z. In 45th Inter-
national Symposium On Microarchitecture, Vancouver, BC, Canada,
Dec. 2012.

[12] M. Lesani and J. Palsberg. Communicating Memory Transactions. In
Proceedings of the 16th ACM Symposium on Principles and Practice
of Parallel Programming, San Antonio, TX, Feb. 2011.

[13] Y. Liu, S. Diestelhorst, and M. Spear. Delegation and Nesting in
Best Effort Hardware Transactional Memory. In Proceedings of the
24th ACM Symposium on Parallelism in Algorithms and Architectures,
Pittsburgh, PA, June 2012.

[14] V. Luchangco and V. Marathe. Transaction Communicators: Enabling
Cooperation Among Concurrent Transactions. In Proceedings of
the 16th ACM Symposium on Principles and Practice of Parallel
Programming, San Antonio, TX, Feb. 2011.

[15] V. Luchangco and V. Marathe. Revisiting Condition Variables and
Transactions. In Proceedings of the 6th ACM SIGPLAN Workshop on
Transactional Computing, San Jose, CA, June 2011.

[16] M. Ringenburg and D. Grossman. AtomCaml: First-Class Atomicity
via Rollback. In Proceedings of the 10th ACM International Confer-
ence on Functional Programming, Tallinn, Estonia, Sept. 2005.

[17] W. Scherer and M. Scott. Nonblocking Concurrent Data Structures
with Condition Synchronization. In Proceedings of the 18th In-
ternational Symposium on Distributed Computing, Amsterdam, The
Netherlands, Oct. 2004.

[18] A. Skyrme and N. Rodriguez. From Locks to Transactional Memory:
Lessons Learned from Porting a Real-world Application. In Proceed-
ings of the 8th ACM SIGPLAN Workshop on Transactional Comput-
ing, Houston, TX, Mar. 2013.

[19] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Transactions
with Isolation and Cooperation. In Proceedings of the 22nd ACM
Conference on Object Oriented Programming, Systems, Languages,
and Applications, Montreal, Quebec, Canada, Oct. 2007.

[20] M. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and M. L.
Scott. Implementing and Exploiting Inevitability in Software Transac-
tional Memory. In Proceedings of the 37th International Conference
on Parallel Processing, Portland, OR, Sept. 2008.

[21] M. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A Com-
prehensive Strategy for Contention Management in Software Trans-
actional Memory. In Proceedings of the 14th ACM Symposium on
Principles and Practice of Parallel Programming, Raleigh, NC, Feb.
2009.

[22] T. Vyas, Y. Liu, and M. Spear. Transactionalizing Legacy Code: An
Experience Report Using GCC and Memcached. In Proceedings of the
8th ACM SIGPLAN Workshop on Transactional Computing, Houston,
TX, Mar. 2013.

[23] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable Transactions
and their Applications. In Proceedings of the 20th ACM Symposium on
Parallelism in Algorithms and Architectures, Munich, Germany, June
2008.

[24] H. Wettstein. The Problem of Nested Monitor Calls Revisited.
SIGOPS Operating Systems Review, 12(1):19–23, Jan. 1978.

9 2014/2/14


