Early Experience on Transactional
Execution of Java Programs Using Intel®
Transactional Synchronization Extensions

Richard M. Yoo

Christopher J. Hughes'

Intel Labs

Sandhya Viswanathan?

Vivek R. Deshpandet
Shirish Aundhe?

Software and Services Group

Intel Corporation
{richard.m.yoo, sandhya.viswanathan, vivek.r.deshpande, christopher.j.hughes, shirish.aundhe}@intel.com

Abstract

This paper applies Intel® Transactional Synchronization Exten-
sions (Intel® TSX) to elide Java™ monitor locks. By utilizing
the transactional execution capability inside a Java Virtual Machine
(JVM), applications running on top of the JVM transparently ben-
efit without source or bytecode modifications.

While others have previously examined transactional execution
of Java programs, we find that the absence of a guarantee on even-
tual transactional commit requires a software fallback, and present
anovel design where the fallback code harmoniously coexists with
the JVM locking mechanism. We also find that if not used judi-
ciously, a real implementation of hardware transactional memory
can significantly degrade application performance. Therefore, we
propose an adaptive algorithm that selectively deoptimizes transac-
tional lock elision where necessary.

Evaluation of the Intel TSX-enabled JVM with various Java
workloads shows promising results. For workloads that utilize a
significant number of coarse-grained monitors, transactional lock
elision provides a substantial performance improvement: up to
1.18x on a standard Java benchmark suite. In contrast, on work-
loads with monitor locks that are hard to elide, our adaptive deop-
timization approach prevents significant performance degradation
from lock elision overheads.

1. Introduction

The landscape of computing is changing. Due to limits in technol-
ogy scaling, designs that exploit instruction-level parallelism to im-
prove single-thread performance now provide diminishing returns.
As a result, computer architects now rely on thread-level paral-
lelism to obtain sustainable performance improvement [24]. More
cores are being added to the same die, and both academia [14] and
industry experts [15] predict hundreds, if not thousands, of cores
on a single chip.

[Copyright notice will appear here once ’preprint’ option is removed.]

The task to efficiently program and utilize these cores, however,
is left to the software programmer. To aid in the task, some modern
programming languages incorporate thread-level parallelism as a
key language feature [5, 7, 25]. In addition to the native support for
threading, these languages also provide synchronization constructs
to orchestrate accesses to shared data.

Java™ is one of these languages. From its inception, Java has
provided language-level support for threading. While it initially
supported only monitors [20], later versions added the Java Concur-
rency Framework (java.util.concurrent) to provide full-
fledged synchronization constructs such as locks and atomic oper-
ations, and concurrent data structures.

However, inter-thread synchronization is often a significant per-
formance overhead for threaded applications. For example, applica-
tions that use coarse-grained monitors may see limited scalability,
since the execution of lock-protected monitors is inherently serial-
ized. Applications that use fine-grained locks, in contrast, generally
provide good scalability, but see increased locking overheads, and
sometimes contain subtle bugs.

To provide high-performance synchronization, computer archi-
tects have proposed various schemes for speculative parallel execu-
tion [13, 26, 28], which allow the threads to optimistically execute
without synchronization, and enforce synchronization only when
necessary. In particular, transactional memory [13] provides soft-
ware the notion of a transaction, a code region that appears to ex-
ecute atomically; underneath, the hardware speculatively executes
multiple threads inside the region, and rolls back the execution only
if it detects any true atomicity violations.

Such decoupling allows programmers to write simple, coarsely-
synchronized codes, while the hardware enforces fine-grained syn-
chronization. Academic designs have shown significant perfor-
mance potential [1, 11, 23], and more recently, commercial de-
signs have become available [17, 31]. Starting with 4th Generation
Intel® Core™ processors, Intel also provides a transactional mem-
ory implementation through Intel® Transactional Synchronization
Extensions (Intel® TSX) [16].

Nevertheless, language-level adoption of transactional memory
has been slow, since the introduction of a transactional construct
may incur other pragmatic issues [34]. Hence, while a few mission-
specific languages do support transactional memory [12], main-
stream languages, e.g., C/C++ and Java, have yet to adopt trans-
actional memory at the language level [29].

We observe that Java’s use of an intermediate instruction set,
combined with language-level support for synchronization con-
structs, provides an opportunity to utilize transactional memory

2014/2/10

without introducing new language constructs. A Java executable
is a series of bytecodes, where a bytecode is an abstract machine
language that the language runtime, a Java Virtual Machine (JVM),
dynamically maps to the host machine’s instruction set. By modify-
ing the JVM to re-map synchronization-related bytecodes to trans-
actional memory operations, a Java application can utilize transac-
tional memory. In addition, since JVMs are also used to execute
programs written in other languages (e.g., Scala, Clojure, etc.), the
benefit is not limited to Java.

This paper applies Intel TSX to a JVM and evaluates its perfor-
mance. Specifically, we use Intel TSX to elide Java monitor locks.
Elision is performed inside the JVM, and Java applications trans-
parently utilize Intel TSX without any source or bytecode changes.

During the process, we identify two key challenges that need
addressing to accelerate a JVM with a real-world transactional
memory implementation. (1) As with other commercialized trans-
actional memory systems [17, 31], Intel TSX does not guarantee
that a transactional execution will eventually succeed; thus, we
need a software fallback to guarantee forward progress, and a pol-
icy on when to employ that fallback. At the same time, this fall-
back mechanism should correctly interact with the existing JVM
monitor lock implementation. (2) On a real transactional memory
implementation, performance degradation is a distinct possibility:
e.g., in monitor-protected code where transactional execution al-
most always fails. Thus, we need a mechanism to detect where
transactional execution is hurting performance, and selectively dis-
able speculation for that code.

None of the prior work that evaluates hardware transactional
memory on Java [4, 6, 8, 17] addresses nor describes solutions
to these challenges. Those efforts were either on simulated and/or
non-commercialized transactional memory systems [4, 8]—which
did not face these real-world challenges—or were on proprietary
JVMs whose modifications were not disclosed [6, 17].

In this paper, we provide a detailed description of how a
production-quality JVM should be modified to utilize Intel TSX—a
widely available transactional memory implementation. However,
our techniques are generic, and can be adapted to other JVMs us-
ing other hardware transactional memory systems, as well. We also
quantify Intel TSX performance on a wide range of Java work-
loads; compared to previous work that only utilized microbench-
marks [8, 17], our workloads include regular Java benchmark
suites. To the best of our knowledge, this is the first paper to evalu-
ate the performance of applying Intel TSX to Java.

In the next section we summarize the Intel TSX programming
interface and its implications. In Section 3, we provide a brief in-
troduction to Java synchronization mechanisms. Then, in Section 4,
we describe our JVM modifications in detail; we provide the per-
formance results in Section 5. Section 6 discusses previous work,
and Section 7 concludes.

2. Intel® Transactional Synchronization
Extensions

Developers can use the Intel TSX instruction set interface to mark
code regions for transactional execution [16]. The hardware exe-
cutes these developer-specified regions speculatively, without per-
forming explicit synchronization and serialization. If speculative
execution completes successfully (i.e., the transaction is commit-
ted), then memory operations performed during the speculative ex-
ecution appear to have occurred atomically at the time of com-
mit, when viewed from other processors. However, if the proces-
sor cannot complete its speculative execution successfully (i.e., the
transaction is aborted), then the processor discards all speculative
updates, restores architectural state to before the region started,
and resumes execution. The execution may then need to serialize

through locking, to ensure forward progress. The mechanisms to
track transactional states, detect data conflicts, and commit or roll
back transactional execution are all implemented in hardware.

2.1 Programming Interface

Intel TSX provides two programming interfaces. With the Hard-
ware Lock Elision (HLE) interface, a programmer marks the mem-
ory operations that acquire and release a lock variable with prefixes.
The write operation performed to acquire the lock is elided, and the
hardware transactionally executes the following instructions, until a
matching HLE-prefixed write operation that releases the lock vari-
able is encountered. While legacy compatible, HLE provides lit-
tle degree of freedom over the fallback; when a transaction aborts,
HLE automatically re-executes the region non-transactionally and
without elision.

Restricted Transactional Memory (RTM), in contrast, provides
a more flexible interface. A programmer specifies a transactional
region through the XBEGIN and XEND instructions; when a trans-
action aborts, architectural state is recovered, and the execution
restarts non-transactionally at the fallback address provided with
the XBEGIN instruction. Inside the fallback handler, the program-
mer can determine whether to retry the hardware transaction or
to fallback to software. In addition, a programmer can explicitly
abort a transaction by executing the XABORT instruction, and the
XTEST instruction can be used to query whether the processor is
currently in transactional execution mode. Nested transactional re-
gions are flattened and treated as one monolithic region. Due to its
generality, in this work we utilize the RTM interface.

2.2 Implications

To accommodate implementation constraints, Intel TSX may abort
a transaction for numerous architectural and microarchitectural
conditions. In addition to data conflicts, examples include exceed-
ing buffering capacity for transactional states, and executing in-
structions that may always abort (e.g., system calls). Therefore,
one cannot assume that a given instance of a transactional region
will ever commit. Instead, the software fallback path must ensure
forward progress, and it must be able to run successfully without
Intel TSX. Additionally, the transactional path and the fallback path
must co-exist without incorrect interactions.

In particular, Intel TSX can be used to convert existing lock-
based critical sections into transactional regions; in this capacity,
it is used for lock elision. For such cases, the natural fallback path
would be to use the prior locking mechanism. To guarantee correct-
ness, however, the transactional path must test the lock during the
execution—to ensure correct interaction with another thread that
may, or already has, explicitly acquired the lock non-transactionally
—and should abort if not free. In addition, the software fallback
handler should establish a policy on whether to retry transactional
execution (e.g., if the lock is not free), or to non-transactionally
acquire the lock.

In this regard, using Intel TSX within a runtime, e.g., a JVM, is
preferable, since once the correct mechanisms are implemented, all
the workloads utilizing the runtime can benefit. A runtime can also
utilize dynamic information to further optimize performance.

3. Java Synchronization Overview

We now briefly describe how Java monitors provide synchroniza-
tion, first at the language level, then how they are implemented
within a JVM.

3.1 Programming Model

Java programmers apply the synchronized keyword to desig-
nate code segments that should be executed in a mutually exclusive

2014/2/10

public class Counter {
private int ¢ = 0;

public synchronized void increment() {
C++;
}

Listing 1: Shared counter with synchronized methods.

public class Counter {
private int ¢ = 0;

public void increment() {
synchronized (this) {
Cc++;

}

Listing 2: Shared counter with synchronized statements.

fashion. The keyword can be used to implement either synchronized
methods or synchronized statements. Listing 1 shows an example
that uses synchronized methods to implement a shared counter. In
Java, every object has a lock associated with it—a monitor lock.
Invocations of synchronized methods on an object are serialized by
implicitly acquiring the object’s monitor lock.

In contrast, synchronized statements are used to provide mutual
exclusion on a contiguous sequence of code that may be smaller
than an entire method. Listing 2 implements the same functional-
ity as in Listing 1, using synchronized statements. Unlike synchro-
nized methods, synchronized statements must specify the object
whose monitor lock is used; this example uses the lock from the
current object, this.

Since monitors are associated with objects, any synchronized
piece of code, whether it be a method or statement, that uses the
monitor lock on the same object cannot be simultaneously executed
by different threads.

In either case, a synchronized code segment is required to have a
block structure; i.e., all Java statements in a synchronized segment
must be in the same lexical scope. When compiled to bytecodes, the
beginning and the end of a synchronized code segment is denoted
byamonitorenter andmonitorexit bytecode, respectively.

3.2 Java Virtual Machine Implementation

monitorenter and monitorexit only specify that the byte-
codes in between the two should be executed mutually-exclusive; a
JVM is free to choose how to implement the exclusion. We now de-
scribe a state-of-the-art, production-quality implementation [2, 27].
Our baseline JVM uses these well-known techniques.

To optimize for the case of uncontended locks, the JVM main-
tains two different locks to implement a single monitor lock: a thin
lock and a fat lock. The thin lock is for the uncontended case; it is
implemented as a lightweight, user-level lock. In contrast, the fat
lock is a fallback if the JVM detects contention; it is implemented
with a heavyweight OS mutex and a condition variable.

Initially, the JVM considers a monitor lock uncontended. A
thread that tries to acquire the lock performs a compare-and-swap
(CAS) on the monitor lock variable, to have it point to its lock
record. If the CAS succeeds, the thread has acquired the lock. If
the CAS fails, however, it means that some other thread acquired
the lock, and the lock is inflated. The thread then tries another CAS
operation to swing the monitor lock variable to point to a fat lock,
and waits on the accompanying condition variable.

When a thread tries to release the monitor lock, it first per-
forms a CAS on the monitor lock, which should still point to its
lock record. If the CAS succeeds, there was no contention, and
lightweight locking remains in effect. However, if the CAS fails,

Nelie BN e R o S

routine monitor_enter (monitor_lock) {

// Handle thin lock
if acquire_thin_lock (monitor_lock) is
return;

success ,

// Lock is inflated: try to elide fat lock

for (int i = 0; i < retry_threshold; i++) {
// Increment total # txns tried
inc_total_count(monitor_lock);

XBEGIN abort_handler;

// Check if fat lock is already acquired
if not fat_lock_occupied(monitor_lock),

// Proceed to execute the critical section
return;

else
// Fat lock is acquired by another thread
XABORT;

abort_handler:
adjust_elision (monitor_lock);
}

// Elision failed: explicitly acquire fat lock
acquire_fat_lock (monitor_-lock);

Listing 3: Pseudocode for Intel TSX-enabled monitor lock ac-
quisition.

routine monitor_exit(monitor_lock) {

// Handle thin lock

if release_thin_lock (monitor_lock) is success,
return ;

// Lock is inflated: did we elide the fat lock?

if not fat_.lock_occupied (monitor_lock),
// Lock was elided: commit transaction
XEND;

else
// Fat lock was acquired
release_fat_lock (monitor_lock);
}
Listing 4: Pseudocode for Intel TSX-enabled monitor lock re-
lease.

this means there was contention while the lock was held, and the
thread executes the code path required to release a fat lock; this
includes notifying waiting threads, and releasing the lock.

Compared to a fat lock, a thin lock acquisition takes only a sin-
gle CAS operation. For uncontended monitors, a lock will never
be inflated, and the synchronization overhead (while unnecessary)
will be small. Some implementations can even bias locks towards
a thread [27], to further reduce the CAS overhead. However, once a
monitor lock is inflated, it remains inflated, and subsequent lock ac-
quisitions will follow the fat lock acquisition protocol. Also notice
that this dual-lock implementation of Java monitors is incompatible
with the HLE interface, which assumes a lock is implemented as a
single in-memory variable.

4. Enabling Transactional Execution on a Java
Virtual Machine

We now describe the modifications to our JVM to enable transac-
tional execution. While our descriptions are in the context of Intel
TSX and our JVM, our techniques are not specific to these—our
ideas are applicable to other JVMs using other hardware transac-
tional memory systems.

2014/2/10

4.1 Basic Algorithm for Monitor Lock Elision

Since Intel TSX does not guarantee that a transaction will eventu-
ally succeed (see Section 2), we use the baseline monitor lock im-
plementation of our JVM as the fallback, and opportunistically try
to elide the lock. Our microbenchmark measurements [33] show
that while Intel TSX is relatively lightweight, its overheads are
larger than a single CAS operation. Combined with the fact that
thin locks are uncontended, this means applying Intel TSX to elide
thin locks would not be beneficial. Therefore, we keep the thin lock
handling unmodified, and apply Intel TSX to elide fat locks only.

Listing 3 shows the pseudocode for our modified monitor lock
acquisition routine. A JVM executes this routine when encounter-
ing the monitorenter bytecode.

The JVM first executes the regular thin lock acquisition protocol
(line 4). If it succeeds, the JVM moves on to execute the first
bytecode in the critical section. If the thin lock acquisition fails,
the monitor lock is inflated, and the JVM tries to elide the fat lock.

To elide the fat lock, the JVM starts a transaction by executing
XBEGIN (line 12), with the address (label) of the abort handler as
the argument. Once it starts transactional execution, the JVM then
checks the fat lock to see if it is occupied by another thread (line
15). As discussed in Section 2, this is necessary to guarantee correct
interaction with (1) a thread that has non-transactionally acquired
the lock, or (2) one that would non-transactionally acquire the lock
in the future, before this thread exits the critical section. If the fat
lock is occupied, we explicitly abort the transaction (line 21). If not,
the JVM speculates the lock elision has succeeded, and moves on to
transactionally execute the critical section. If, during the execution
of the critical section, another thread non-transactionally acquires
the lock, the hardware will automatically abort this transaction.

When a transaction aborts, either via an XABORT instruction
or a hardware abort, execution resumes at the abort_handler
label (line 23). Once some statistics are updated (line 24, discussed
later), the JVM retries transactional execution as long as the retry
count is below a certain threshold, i.e., retry_threshold. If the
JVM fails to successfully elide the fat lock within the threshold, it
gives up on transactional execution, explicitly acquires the fat lock
(line 28), and then executes the critical section non-transactionally.

On the other hand, Listing 4 shows the pseudocode for our
modified monitor lock release routine, which the JVM executes
when it encounters a monitorexit bytecode.

First, the JVM checks whether the critical section was entered
by acquiring a thin lock, and tries to release the thin lock (line
4). If it fails, the monitor lock was inflated, and the JVM checks
whether it had transactionally elided the fat lock, by checking its
occupancy (line 8). If the lock is not occupied, it means the lock
was transactionally elided, so the JVM commits the transaction
(line 10). If the lock is occupied, on the other hand, it means the
JVM had explicitly acquired the fat lock. So the JVM releases the
lock using the regular fat lock release protocol (line 14).

The correctness of the else-clause on line 12 relies on a non-
obvious property; it works only if it is impossible for a thread
that transactionally elided the fat lock in the monitor_enter ()
routine to find the lock to be occupied by a different thread in
monitor_exit (). When a thread transactionally elides the fat
lock in monitor_enter (), it checks the status of the fat lock
(Listing 3, line 15), adding the lock variable to the read set of
its transaction. If another thread non-transactionally acquires the
fat lock later, it must write to the lock variable as part of the
acquisition. As mentioned above, this conflict will be detected by
the hardware and will abort the transaction'.

! This assumes a transactional memory system with strong atomicity guar-
antee, which the cache coherence-based commercial designs trivially sat-
isfy [8, 16, 17, 31].

routine adjust_elision(monitor_lock) {

// Increment the abort count
abort_count = inc-abort_count(monitor_-lock);

// Get total # txns tried
total_count = get_total_count(monitor_lock);

// Is the monitor lock contended enough?
if abort_count > abort_threshold:

// Bias against lock elision?

if abort_count / total_count > abort_ratio:
// Deoptimize txn lock elision
set_elision_state (monitor_lock, NO);

// Bias towards lock elision?
else if total_count > lock_-threshold:

// Always perform txn lock elision
set_elision_state (monitor_-lock , YES);

// Perform txn scheduling
while fat_lock_occupied (monitor_lock) delay;

Listing 5: Pseudocode for the adaptive tuning logic.

4.2 Adaptive Tuning

In addition to our basic algorithm, we also implement performance
features to dynamically adapt the JVM’s lock elision behavior.
Specifically, for each monitor lock, we maintain the number of
transaction attempts and aborts, and selectively deoptimize lock eli-
sion when not profitable. Listing 5 shows adjust_elision ().

The first criteria to determine deoptimization is whether the
number of transactional aborts is significant (line 10). For mon-
itor locks with a sufficient number of aborts, if the transactional
abort ratio is greater than a user-specified threshold (line 13), we
deoptimize transactional lock elision. To keep track of this deci-
sion, for each monitor lock, the JVM maintains a variable that
records the lock elision state: MAYBE, YES, or NO. When the state
is changed to NO, the JVM will re-map the code so that when the
monitorenter bytecode is next encountered, it will execute the
original, non-transactional monitor lock acquisition code.

On the other hand, the JVM may decide to bias for transactional
lock elision. In Listing 5, for monitor locks that have few aborts
but are acquired frequently (line 18), the JVM sets the lock elision
state to YES, to bias the locks so that transactional elision is always
attempted. To further optimize performance, the JVM may disable
the adjust_elision () routine entirely.

By default, a monitor lock is initialized to the MAYBE state—
which is the same as YES but with the adjust_elision () rou-
tine enabled. Monitor locks in NO and YES states may periodically
be reset to MAYBE to adapt to program phase changes.

In addition to deoptimization, the last part of adjust_elision ()

implements transaction scheduling (line 24) to further adapt the
lock elision behavior. Here, we choose to spin-wait until the fat
lock is free; other mechanisms (e.g., exponential backoff, adaptive
scheduling [32], etc.) can also be implemented.

4.3 Discussion

Since Intel TSX implements closed nesting (see Section 2), this
design trivially handles nested monitors. When a transaction aborts,
the JVM will resume execution at the outermost abort handler. It
may then re-attempt to elide the outermost monitor lock.

In cases of exceptions (java.lang.Exception) thrown in
synchronized code, we conservatively abort. Assuming the excep-
tion recurs on every attempted transactional execution, the JVM
will eventually acquire the monitor lock non-transactionally. At that
point the exception will be raised again, and be handled by the

2014/2/10

—+-noopt -=bl tsx —+—noopt -=bl tsx

I ~ w
P O
.
w
&

;

o
o

Speedup over 1 Thread noopt
Speedup over 1 Thread noopt

-

2 4 2 4 8
#Threads #Threads

©
[

(a) Hashtable (Op, 100g, Or) (b) Hashtable (20p, 70g, 10r)

Speedup over 1 Thread noopt

—+—noopt —=—b| tsx === cc —+—noopt —=—bl tsx == cC

~
~

)
\,

Y
o

e}

\
\

«w

IS
\
IS

w
w

N
\
\

~
\
Speedup over 1 Thread noopt

|
/

#Threads #Threads

(c) HashMap (0p, 100g, Or) (d) HashMap (20p, 70g, 10r)

Figure 1: Microbenchmark performance results. Speedup is against noopr with single thread. p, g, and r denotes the percentage of put(), get(), and

remove() operations, respectively.

non-transactional, standard exception handling routine. We simi-
larly abort a transaction when the execution flow leaves the scope
of the JVM (e.g., via a use of the Java Native Interface (JNI)).
Since Intel TSX detects conflicts at the hardware level, it is possible
to transactionally execute JNI code and still maintain correctness.
Nevertheless, we opted for a conservative design choice.

In addition, we do not modify condition variable routines (i.e.,
wait (), notify (), and notifyAll ()). We find that condi-
tion variable use in Java is relatively rare [18]. Moreover, in the
worst case, invocation of these methods will simply abort a trans-
action’: The thread will eventually acquire the monitor lock non-
transactionally, and correct operation will be guaranteed through
non-transactional execution. In the future, transactional execution-
aware condition variables may be implemented [10].

4.4 Performance Debugging Support

To help users optimize the performance of an Intel TSX-enabled
JVM, we also implement some performance debugging features.
Specifically, a command-line flag tells the JVM to dump trans-
actional statistics for each monitorenter bytecode at the end
of execution. In addition to the stack trace, the dump includes the
number of aborts, elision attempts, and a transactional abort code
histogram. We found these extremely helpful in pinpointing scala-
bility bottlenecks, and in further optimizing code for performance.

5. Performance Results
5.1 Experiment Settings

We use an Intel 4th Generation Core processor with Intel TSX sup-
port. The processor has 4 cores with 2 Hyper-Threads per core, for
a total of 8 threads. Each core has a 32 KB L1 data cache, which is
used to track transactional states. All tracking and conflict detection
are done at cache line granularity, using physical addresses.

For those benchmarks that are distributed in source code, we
modified the source to bind application threads so that as many
cores are used as possible—e.g., a 4 thread run will use a single
thread on each of the 4 cores, while an 8 thread run will also use
4 cores, but with 2 threads per core. We do not alter the thread
binding of benchmarks distributed via binaries.

We use a production-quality JVM? for this study. The JVM has
two modes of execution: interpreted and just-in-time (JIT) com-
piled mode. Initially, the JVM executes application code through
the interpreter, but once it identifies frequently executed code sec-

2 This is not the case for the transactional memory system in [4], where
transactional writes do not invalidate other transactions until commit. There,
await () call can lead to a deadlock.

3 The vendor of the JVM specifically asked us not to disclose the name.

tions, it selectively JITs them to generate native machine code. We
apply our transactional lock elision algorithm to the JIT execution
mode only; the interpreter does not perform lock elision. The JVM
implements adaptive deoptimization and biasing for lock elision
(see Section 4.2) by triggering the JIT compiler to re-generate nec-
essary codes. Finally, to better adapt to dynamic execution behav-
ior, when the JVM recompiles a synchronized segment (e.g., due to
code path changes), it sets the lock elision state of the monitor lock
to MAYBE, and re-evaluates transactional elision profitability.

We found that updates to monitor lock statistics counters, espe-
cially the number of transaction begins, incur synchronization over-
heads. To reduce this, we use a stochastic method [9]. Specifically,
we maintain a multiplier, and on a transaction begin we increment
the counter only if a hardware timestamp (e.g., rdt sc) modulo the
multiplier is 0. When the JVM dumps the statistics, the counters are
compensated with the multiplier to compute the estimated value.
Abort counts are incremented precisely. Due to this design, suc-
cessful transactions with few executions may not be detected, and
the total number of transaction begins may be underrepresented.

For all experiments, we maintain the JVM heap size so that
garbage collection does not dominate the execution time, yet some
degree of garbage collection is present. For statistical fidelity, all
data points are averaged over at least 10 executions.

5.2 Microbenchmark Results

In this section we use microbenchmarks to isolate Intel TSX-
enabled JVM performance. Specifically, we use two benchmarks
that perform concurrent updates on a shared hash table and a hash
map, respectively. We can control the ratio of put (), get (),
and remove () operations in these benchmarks. For the hash ta-
ble benchmark, we use java.util.Hashtable, which already
uses synchronized methods to provide thread safety. For the hash
map benchmark, we use java.util.HashMap, which does not
include synchronization; therefore, we enclose each call to access
methods in a synchronized statement block.

Figure 1 shows the performance results. In the figure, noopt
denotes the baseline thin lock/fat lock implementation described
in Section 3. On the other hand, bl denotes the baseline with a
biased locking optimization [27], which tries to bias a monitor lock
towards a thread, and elides some CAS operations if the thread re-
acquires the lock. This optimization is widely regarded as the state-
of-the-art Java synchronization optimization. Lastly, tsx shows the
performance of the Intel TSX-enabled JVM, described in Section 4.
Speedup is over the baseline (noopt) with a single thread. We
discuss the other data series later in this section.

We see that performance with the non-transactional synchro-
nization schemes (noopt and bl) does not scale with increas-
ing number of threads; performance actually worsens with more

2014/2/10

—+—noopt -m-bl

tsx

/
/
/

» . =
,;.’%‘ e il 1

. A
R W;.A_PL}*A

!

[= N
ocukruUNLW
.

Normalized Execution Time

bayes genome ‘ intruder ‘ kmeans

labyrinth

ssca2

vacation

yada

Figure 2: Intel TSX-enabled JVM performance on Java STAMP workloads. Execution time is normalized to noopt with single thread.

threads. Intel TSX, however, provides significant scalability, by
exploiting the concurrency within a critical section. When the op-
erations are read-only* (Figures la and Ic), scalability is close
to linear. Even when there are a significant fraction of write op-
erations (Figures 1b and 1d), Intel TSX performs better than the
non-transactional schemes; at 8 threads, the speedup over noopt is
14x for Hashtable and 11x for HashMap, respectively.

As another reference point, for the hash map benchmark, we
also evaluate the performance of a concurrent implementation—
java.util.concurrent.ConcurrentHashMap. This ver-
sion uses a non-blocking synchronization algorithm to implement
the data structure. In Figures 1c and 1d, cc denotes the perfor-
mance. For this concurrent implementation, we do not place the
calls to access methods within a synchronized statement block.

When operations are read-only (Figure 1c), eliding the monitor
lock with Intel TSX provides comparable scalability to the non-
blocking implementation, albeit with somewhat higher overheads.
When a significant fraction of operations are writes (Figure 1d),
however, Intel TSX provides smaller benefits than the non-blocking
implementation. Nevertheless, this performance is achieved with
the original binary, rather than relying on a significant rewrite of
the data structure.

5.3 Transactional Memory Benchmark Results

We now evaluate our Intel TSX-enhanced JVM on full-fledged
workloads. Specifically, we examine STAMP [21], a benchmark
suite extensively used by the transactional memory community.
The benchmark suite is written in C; starting from [30], we ported
the benchmark suite to Java. In this version, critical sections are
expressed using synchronized statements, with the application class
itself providing the monitor lock—this amounts to synchronizing
on a single global lock.

Since the benchmark suite was specifically written to evaluate
transactional memory implementations (and was originally written
in C), the workloads rely heavily on their own data structure imple-
mentations, rather than implementations from a library. Hence, in-
teractions with Java Runtime Environment (JRE) libraries are min-
imal, and the critical sections are mostly in the application code.

Figure 2 compares the performance of different synchroniza-
tion schemes. Execution time is normalized to that of the baseline
(noopt) with a single thread. Table 1 also provides the transactional
statistics, measured by the JVM performance debugging feature
(see Section 4.4). In the table, begin denotes the total number of
transaction begins, and among those transactions, abort gives the
abort ratio. As discussed in Section 5.1, due to the stochastic na-
ture of our shared counter implementation, some samples may be
missed, and numbers may not be precise. We nevertheless verified

4 java.util.Hashtable increments a counter even for get () oper-
ations. We move the increment towards the end of the method to reduce
transactional conflicts.

tl2lals| 120als 102048 1248 120als 1248 12048 12048 1248
AVG.

Workload 1 thread 2'threads 4'threads 8 threads
begin | abort | begin | abort | begin | abort | begin | abort

bayes

genome 2.6E6 7% 4.6E6 44% 7.5E6 68% 6.2E7 99%

intruder 2.6E8 95% 2.8E8 95% 2.6E8 95%

kmeans 8.7E5 0% 4.4E6 2% 5.2E6 17% 5.9E6 34%

labyrinth 8.0E0 100%

ssca2 2.6E7 0% 2.3E7 1% 3.0E7 28%

vacation 6.3E6 50% 1.7E7 78% 3.9E7 94% 1.5E8 102%

yada 3.8E7 91% 3.3E7 83% 3.2E7 56%

Table 1: Java STAMP transactional statistics. Due to the stochastic
counting scheme used [9], reported numbers may not be precise.

that all the workloads do execute Intel TSX instructions to perform
transactional lock elision.

In the figure, as in the microbenchmark results, noopt and
bl represent the performance of the baseline and biased locking-
enabled JVM, respectively. Overall, these schemes do not scale; the
only data points that see a performance increase from more threads
are kmeans at two and four threads, and ssca2 at two threads.

In contrast, Intel TSX manages to improve scalability on many
workloads. Specifically, kmeans and ssca2 scale up to 8 threads,
due in part to their low transaction abort ratio (see Table 1). Intel
TSX also enables scaling of genome and vacation up to 4 threads,
but not with 8 threads. These two workloads exhibit medium to
large transactional footprints [21]; since Hyper-Threads share the
L1 cache, increasing the thread count from 4 to 8 reduces the effec-
tive transactional buffering capacity for each thread, thus increasing
the number of transactional aborts.

On the other hand, intruder has a critical section that is heavily
contended. When Intel TSX-based lock elision is first performed
(2 threads), performance suffers due to transaction overheads and
abort penalties. However, the abort ratio does not increase with
more threads; thus, adding more threads successfully exploits par-
allelism within the critical section.

Among the non-scaling workloads, bayes implements a ran-
domized hill climbing algorithm, and is known to have large vari-
ance in execution time [21]. Our results match this known behav-
ior. In contrast, manual code analysis of labyrinth shows that the
average transaction footprint is about 14 MB, well larger than the
L1 cache. Hence, while our stochastic statistics collection failed to
collect samples, we know that the transactional executions consis-
tently fail, leading to flat performance as we increase thread count.
Finally, the execution time of yada is dominated by the garbage
collector. The workload inserts/deletes nodes in a graph, resulting
in high garbage collector activity. Still, the Intel TSX-enabled ver-
sion provides similar performance to the other versions.

5.3.1 Sensitivity Study: Transaction Retry Threshold

In Section 4, we introduced the transaction retry threshold, within
which a JVM retries transactional execution to elide a monitor lock.
In this section we vary the user-specified threshold from 20 to 80,

2014/2/10

M tsx.20 Wtsx.30 MW tsx.40 M tsx.50 M tsx.60 M tsx.70 M tsx.80

e

m

Normalized Execution Ti

bayes genome intruder kmeans

labyrinth ssca2

vacation yada AVG.

Figure 3: Java STAMP workloads sensitivity to transaction retry threshold. Execution time is normalized to the case where the threshold is 50.

M noopt Wbl mtsx

Normalized Throughput

Figure 4: SPECjvm2008 performance results. 8 threads are used. Performance is normalized to that of noopt (higher is better).

and observe its impact on the Intel TSX-enabled JVM performance.
Figure 3 shows the results.

Workloads exhibit varying sensitivity to the threshold—different
workloads exhibit different trends, and the best performing retry
threshold differs across workloads. Data presented in Figure 2 are
from the best performing configuration for each workload.

We see that applications with very few aborts (e.g., ssca2, see
Table 1) and/or long transactions (e.g., labyrinth [21]) are rela-
tively insensitive to the retry threshold. On the other hand, applica-
tions with high abort ratios (e.g., intruder, see Table 1) and/or short
transactions (e.g., kmeans [21]) do better with a smaller threshold.
The remaining applications benefit from an increased retry thresh-
old up to an inflection point, after which the retry overhead out-
weighs any increase in the transactional commit ratio.

Based on the above findings, we believe an auto-tuning ap-
proach that heuristically adjusts the transaction retry threshold
should be quite effective; we leave such a scheme for future work.

5.4 Regular Benchmark Results

In this section we evaluate the Intel TSX-enabled JVM on reg-
ular Java benchmark suites: specifically, SPECjvm2008 and Da-
Capo [3]. Compared to STAMP, a benchmark suite written to eval-
uate transactional memory systems, these benchmark suites do not
make as much use of critical sections, have more complicated mon-
itor use, and exhibit an increased dependence on the JRE library.

5.4.1 SPECjvm2008 Benchmark Suite Results

We executed all of the SPECjvm2008 workloads on our Intel TSX-
enabled JVM. All execution results, comprising both transactional
and non-transactional executions, passed the benchmark result ver-
ification routines.

Even with the baseline monitor lock implementation, we find
that many SPECjvm2008 workloads already scale relatively well,
diminishing the potential benefit due to transactional lock elision.

[Workload [[begin [abort [library [lib_abort [cap_abort |
compiler.compiler 8.3E2 3% 100% 9%
compiler.sunflow 3.9E6 12% 100% 0%
crypto.aes 9.6E2 46% 55% 66% 8%
crypto.rsa 1.5E7 86% 100% 6%
derby 1.4E9 8% 0% 16%
sunflow 5.3E4 42% 2% 80% 4%
xml.transform 4.8E6 54% 5% 31% 1%
xml.validation 5.6E8 11% 11% 27% 1%

Table 2: SPECjvm2008 transactional statistics. library denotes the per-
centage of monitor locks that are in JRE libraries, and lib_abort denotes
the abort ratio for those library locks. cap_abort denotes the ratio of
aborts that were due to transactional buffering capacity overflow.

Figure 4 summarizes the results when 8 threads are used. Perfor-
mance is normalized to that of the baseline (noopt).

We see that not all workloads show sensitivity to the monitor
lock implementation; many of them spend minimal time executing
critical sections, and neither biased locking (average 1.00x over
baseline) nor transactional lock elision (average 1.01x over base-
line) provides tangible performance improvement.

However, some workloads do exhibit sensitivity to monitor lock
performance, and performance improvement due to Intel TSX can
be significant. Table 2 shows the transactional statistics collected
for such workloads’.

compiler.compiler uses java.util.Hashtable, for which
Inte] TSX-based lock elision can significantly improve perfor-
mance (see Section 5.2). Similarly, crypto.rsa utilizes a synchro-
nized hash map to implement a lookup cache, and benefits from
lock elision. This shows that performing transactional lock elision
on key JRE data structures can improve application performance.

Workloads that exercise monitor locks in the application code
tend to benefit from transactional execution, as well (small values

5 scimark workloads execute some transactions that rarely abort, and our

performance debugging feature failed to collect samples.

2014/2/10

Hnoopt Mbl

tsx M tsx_naive

34

32 34

25
Q
g 38 92 92 92
E
)
S
315 -
3
- 1
[
]
T 05 -
gos
o
2 0 -
124 8 1
h2

tradebeans

S
0o
S|

tradesoap

Figure 5: Effect of performance deoptimization on DaCapo workloads. Execution time is normalized to noopt with 1 thread.

in the 1library column in Table 2). derby, in particular, has most
of the monitor locks in the application code, and transactional lock
elision has few aborts. Similarly, scimark workloads use a custom,
synchronized random number generator to initialize some of its
data structures; transactionally eliding the monitor lock improves
performance. sunflow workload implements a k-d tree, whose build
phase benefits from transactional execution.

In contrast, eliding the more complicated monitors in some
JRE libraries turns out to be difficult. In Table 2, the 1ib_abort
column shows the transaction abort ratio for monitor locks that are
in the JRE. When compared to the overall transaction abort ratio
(the abort column), we can see that the JRE transaction abort
ratio is considerably higher. Inspection of the library codes reveals
possible sources of transactional contention, such as debugging
counter increments and object allocations (e.g., new) within a
monitor. Restructuring the codes to pull such segments outside a
monitor will better prepare the libraries for transactional execution.

Table 2 also shows the ratio of transactional aborts that are due
to transactional buffering capacity overflow (the cap_abort col-
umn). Across the workloads the ratio is relatively low, demonstrat-
ing that Intel TSX buffering capacity (32 KB on our system) is
sufficient to transactionally execute standard Java workloads.

Overall, in Figure 4, we can see that tsx rarely performs worse
than bl, the state-of-the-art monitor lock optimization scheme. This
indicates that transactional lock elision can be safely applied with-
out worrying too much about performance pitfalls.

5.4.2 DaCapo Benchmark Suite Results

Compared to SPECjvm2008, none of the DaCapo workloads ex-
hibited significant potential for performance improvement through
transactional lock elision. Roughly, the workloads could be cate-
gorized into two classes, and each class exhibited different reasons
for minimal performance improvement.

For the first class, the number of workload threads is deter-
mined by the input. These workloads significantly oversubscribe
the system—for example, avrora maintains on average 30 threads
throughout the execution on a 4-core machine. While the Intel
TSX-enabled JVM manages to elide a significant number of moni-
tor locks, execution is dominated by OS thread management.

In contrast, in the second class, the number of threads is user-
controllable. However, most of these workloads scale well even
on the baseline JVM, leaving little room for improvement through
transactional lock elision. The remaining workloads do not scale at
all, but for reasons other than synchronization [18].

Since the DaCapo workloads have little potential for speedup
from Intel TSX, we rather use these to demonstrate that our use
of transactional execution does not negatively impact performance.
In particular, three workloads, h2, tradebeans, and tradesoap,
exhibit poor scalability on the baseline JVM, and naively applying
Intel TSX greatly reduces performance.

Figure 5 shows the performance with various JVM implementa-
tions. In the figure, tsx_naive shows the performance from the Intel
TSX-enabled JVM, but with the deoptimization feature disabled.

As can be seen, on h2 and tradebeans, noopt and bl provide
worse performance with more threads. Naively applying Intel TSX
to elide the monitor locks (tsx_naive) aggravates the situation, and
results in a significant slowdown.

These workloads are among the most monitor-intensive work-
loads in the DaCapo suite [18]. Debugging dumps for these work-
loads also show that those monitors rarely can be elided; in fact,
almost all the transactions abort. Our performance deoptimization
feature (see Section 4.2) can detect this situation, and dynamically
removes the transactional lock elision code. In the figure, when this
feature is enabled (tsx), performance is much closer to noopt or bl.

6. Related Work

As discussed in Section 1, previous work exists on exploring how
to apply hardware transactional memory to Java. The biggest dif-
ference of our work stems from the best effort property of Intel
TSX [16]; the system does not guarantee that a transaction will
eventually commit. While such a design is common for commer-
cial systems [8, 17, 31], it requires a software fallback. As demon-
strated, when applied to a JVM for monitor lock elision, this re-
quires careful handling of the existing thin lock/fat lock mecha-
nism. In addition, if not used judiciously, real implementations of
hardware transactional memory may reduce performance; thus, a
JVM that leverages such support should include adaptive tuning
of the fallback, such as our performance deoptimization feature. To
the best of our knowledge, no previous work discusses these issues.
Some researchers examined using software transactional mem-
ory to support transactional execution of Java programs. Since a
JVM does not expose the memory location of an object, these ap-
proaches similarly require modifying the JVM [19, 22]. Specifi-
cally, these schemes allow a programmer to designate a code sec-
tion as at omic, which the JVM instruments to keep track of trans-
actional accesses. This instrumentation can take place at class load
time [19] or at compile time [22]. Since Intel TSX does not require
instrumentation, however, such overheads can be avoided.

7. Conclusion

Applying Intel Transactional Synchronization Extensions to elide
Java monitor locks shows promising results. By devising a software
fallback algorithm that coexists with the underlying JVM locking
mechanism, and by implementing an adaptive tuning approach that
selectively deoptimizes transactional lock elision where necessary,
we obtain performance improvements on varying ranges of work-
loads. On a standard Java benchmark suite, we observe up to 1.18x
performance improvement. Proposed modifications are confined to
the JVM, and applications running on top of a JVM transparently
benefit without source or bytecode modifications.

2014/2/10

Acknowledgments

We thank the anonymous reviewers for their constructive feedback.
We also thank Konrad Lai, Ravi Rajwar, Justin Gottschlich, and
Tatiana Shpeisman for their help and feedback on this project.

References

[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded transactional memory. In Proceedings of the 11th
International Symposium on High-Performance Computer Architec-
ture, pages 316-327, 2005.

[2] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks:
Featherweight synchronization for Java. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, pages 258-268.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 169—190, 2006.

[4] B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. C. Minh,
L. Hammond, C. Kozyrakis, and K. Olukotun. Executing Java pro-
grams with transactional memory. Sci. Comput. Program., 63(2):111-
129, 2006.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented ap-
proach to non-uniform cluster computing. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 519-538, 2005.

3

=

[5

=

[6

=

C. Click. Azul’s experience with hardware transactional memory. In
HP Labs Bay Area Transactional Memory Workshop, 2009.

[7] Cray Inc. Chapel Language Specification 0.796, 2010.

[8] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with
a commercial hardware transactional memory implementation. In
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
157-168, 2009.

[9] D. Dice, Y. Lev, and M. Moir. Scalable statistics counters. In
Proceedings of the 25th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 43-52, 2013.

[10] P. Dudnik and M. M. Swift. Condition variables and transactional
memory: Problem or opportunity? In the 4th ACM SIGPLAN Work-
shop on Transactional Computing, 2009.

[11] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In Proceedings
of the 31st Annual International Symposium on Computer Architec-
ture, pages 102-113, 2004.

[12] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In Proceedings of the 10th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages
48-60, 2005.

M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, pages
289-300, 1993.

[14] M. Hill and M. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33-38, 2008.

[15] Intel Corporation. From a few cores to many: A tera-scale computing
research review. White Paper, 2006.

[13

[utr?

[16] Intel Corporation. Intel architecture instruction set extensions pro-
gramming reference. Chapter 8: Intel transactional synchronization
extensions. 2012.

[17] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory architec-
ture and implementation for IBM System z. In Proceedings of the
45th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 25-36, 2012.

[18] T. Kalibera, M. Mole, R. Jones, and J. Vitek. A black-box approach
to understanding concurrency in DaCapo. In Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 335-354, 2012.

[19] G. Korland, N. Shavit, and P. Felber. Deuce: Noninvasive software
transactional memory in Java. Transactions on HiPEAC, 5(2), 2010.

[20] B. W. Lampson and D. D. Redell. Experience with processes and
monitors in Mesa. Commun. ACM, 23(2):105-117, 1980.

[21] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford transactional applications for multi-processing. In Proceedings of
the 2008 IEEE International Symposium on Workload Characteriza-
tion, pages 3546, 2008.

[22] M. Mohamedin, B. Ravindran, and R. Palmieri. ByteSTM: Virtual
machine-level Java software transactional memory. In the 8th ACM
SIGPLAN Workshop on Transactional Computing, 2013.

[23] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM:
Log-based transactional memory. In Proceedings of the 12th In-
ternational Symposium on High-Performance Computer Architecture,
pages 254-265, 2006.

[24] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.
The case for a single-chip multiprocessor. In Proceedings of the 7th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 2—11, 1996.

[25] Oracle. The Fortress Language Specification Version 1.0, 2008.

[26] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th
Annual IEEE/ACM International Symposium on Microarchitecture,
pages 294-305, 2001.

[27] K. Russell and D. Detlefs. Eliminating synchronization-related atomic
operations with biased locking and bulk rebiasing. In Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 263-272,
2006.

[28] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple reser-
vations and the Oklahoma update. Parallel Distributed Technology:
Systems Applications, IEEE, 1(4):58-71, 1993.

[29] Transactional Memory Specification Drafting Group. Draft specifica-
tion of transactional language constructs for C++, version: 1.1. 2012.

[30] University of California Irvine. Java STAMP benchmark suite version
0.5, http://demsky.eecs.uci.edu/software.php.

[31] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael. Evaluation of Blue Gene/Q hardware
support for transactional memories. In Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques, pages 127-136, 2012.

[32] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for
transactional memory systems. In Proceedings of the 20th ACM
Symposium on Parallelism in Algorithms and Architectures, pages
169-178, 2008.

[33] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
evaluation of Intel transactional synchronization extensions for high-
performance computing. In Proceedings of SC13: International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, pages 19:1-19:11, 2013.

[34] L. Ziarek, A. Welc, A.-R. Adl-Tabatabai, V. Menon, T. Shpeisman,
and S. Jagannathan. A uniform transactional execution environment
for Java. In Proceedings of the 22nd European Conference on Object-
Oriented Programming, pages 129-154, 2008.

2014/2/10

Notice and Disclaimers

Intel and Intel Core are trademarks of Intel Corporation in the U.S. and/or
other countries. Java is a registered trademark of Oracle and/or its affiliates.
Other names and brands may be claimed as the property of others.

Software and workloads used in performance tests may have been op-
timized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when
combined with other products. For more information go to
http://www.intel.com/performance.

Intel’s compilers may or may not optimize to the same degree for non-
Intel microprocessors for optimizations that are not unique to Intel micro-
processors. These optimizations include SSE2, SSE3, and SSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, func-
tionality, or effectiveness of any optimization on microprocessors not man-
ufactured by Intel. Microprocessor-dependent optimizations in this product
are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.
Notice revision #20110804.

2014/2/10

